Реферат: Кольца и полукольца частных
Определение3 . Дробью назовём элемент , где - некоторый плотный идеал. ( - сокращение от - гомоморфизм, в данном случае: - гомоморфизм )
Таким образом, - гомоморфизм аддитивных полугрупп, для которого для и .
Введём так же дроби , положив и для .
Сложение и умножение дробей определяются следующим образом:
пусть и тогда
,
, .
Покажем, что является идеалом, где т.е. сохраняются операции:
1. Если , то .
Пусть , , тогда .
2. Если и , то . По условию .
Так как - коммутативное полукольцо, то .
. Таким образом, - идеал.
Покажем, что идеал является плотным: надо доказать, что плотный идеал - , т.е. .
По определению сложения и умножения , т.е. содержит плотный идеал значит, по свойству 20 идеал является плотным.
Дроби образуют аддитивную коммутативную полугруппу с нулём и полугруппу с единицей. То есть образуют полукольцо.
Доказательство:
1. По определению сложения и умножения:
, .
,
2. Коммутативность:
3. Ассоциативность:
4. Нейтральный элемент.
5. Дистрибутивность:
Правосторонняя дистрибутивность аналогично.