Реферат: Курс лекций по теории вероятностей

Раздел 1. Классическая вероятностная схема

1.1 Основные формулы комбинаторики

В данном разделе мы займемся подсчетом числа «шансов». О числе шансов говорят, когда возможно несколько различных результатов какого-либо действия (извлечение карты из колоды, подбрасывание кубика или монетки, двух кубиков и т.д.). Число шансов — это число таких возможных результатов, или, иначе говоря, число способов проделать это действие.

Теорема о перемножении шансов

Теорема 1 . Пусть имеется, k групп элементов, причем i -я группа содержит ni элементов, 1<= i <= k . Выберем из каждой группы по одному элементу. Тогда общее число N способов, которыми можно произвести такой выбор, равняется

Замечание 1 . В теореме 1 считается, что даже если все элементы в i -й группе неразличимы, выбрать один из них можно ni способами.

Замечание 2. Результат выбора, описанного в теореме 1 , представим в виде набора (а1 , а 2 ,…, а k ) в котором а i — выбранный из i -й группы элемент. Тогда общее число различных наборов (а1 , а 2 ,…, а k ) также равняется

Доказательство теоремы 1.

Занумеруем элементы i -ой группы числами от 1 до ni . Элемент из первой группы можно выбрать n 1 способами. Если мы выбрали элемент j , 1<= i <= n 1 , то выбрать элемент из второй группы мы можем n 2 способами. Получаем, что с первым элементом j возможно составить n 2 пар ( j , l ) , где 1<= l <= n 2 .

Но столько же пар можно составить и с любым другим элементом первой группы. Тогда всего пар, в которых первый элемент выбран из первой группы, а второй — из второй, существует ровно

Иначе говоря, есть способов выбрать по одному элементу из первых двух групп. Возьмем одну такую пару ( j , l ) . Заметим, что элемент из третьей группы можно выбрать n 3 способами, то есть возможно составить ровно n 3 троек ( j , l , m ) , добавляя к данной паре ( j , l ) любой из n 3 элементов третьей группы.

Но столько же троек можно составить и с любой другой парой ( j , l ). Тогда всего троек, в которых первый элемент выбран из первой группы, второй — из второй, а третий — из третьей, существует ровно .

Продолжая рассуждения, методом математической индукции заключаем справедливость утверждения теоремы.

Урны и шарики

Есть урна, (то есть ящик), содержащая n занумерованных объектов, которые мы без ограничения общности будем считать шариками. Мы выбираем из этой урны k шариков. Нас интересует, сколькими способами можно выбрать k шариков из n , или сколько различных результатов (то есть наборов, состоящих из k шариков) получится.

На этот вопрос нельзя дать однозначный ответ, пока мы не определимся

· с тем, как организован выбор (скажем, можно ли шарики возвращать в урну), и

· с тем, что понимается под различными результатами выбора.

Рассмотрим следующие возможные схемы выбора:

1. Выбор с возвращением: каждый выбранный шарик возвращается в урну, то есть каждый из k шариков выбирается из полной урны. В полученном наборе, состоящем из k номеров шариков, могут встречаться одни и те же номера (выборка с повторениями ).

2. Выбор без возвращения: выбранные шарики в урну не возвращаются, и в полученном наборе не могут встречаться одни и те же номера (выборка без повторений ).

И в том, и в другом случае результатом выбора является набор из k номеров шариков. Удобно считать, что шарики всегда выбираются последовательно, по одному (с возвращением или без).

Условимся, какие результаты мы будем считать различными .

Есть ровно две возможности.

1. Выбор с учетом порядка: два набора номеров шариков считаются различными, если они отличаются составом или порядком номеров. Так, при выборе трех шариков из урны, содержащей 5 шариков, наборы (1,2,5), (2,5,1) (4,4,5) различны, если производится выбор с учетом порядка.

2. Выбор без учета порядка: два набора номеров шариков считаются различными, если они отличаются составом. Наборы, отличающиеся лишь порядком следования номеров, считаются одинаковыми. Так, в примере выше первые два набора (1,2,5), (2,5,1) есть один и тот же результат выбора, а набор (4,4,5) — другой результат выбора.

Подсчитаем теперь, сколько же возможно различных результатов при каждой из четырех схем (выбор с возвращением и без, и в каждом из этих случаев учитываем ли мы порядок или нет).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 309
Бесплатно скачать Реферат: Курс лекций по теории вероятностей