Реферат: Квантово-химические правила отбора элементарных стадий
Если заполненные связывающие МО реагентов коррелируют по симметрии (имеют одинаковую симметрию) с заполненными связывающими МО продуктов реакции, такая реакция будет идти согласованно термически (как ЭС). В ходе такой реакции симметрия взаимодействующих орбиталей сохраняется вдоль координаты реакции по ППЭ. Если такой корреляции нет, согласованная реакция пойдет только фотохимически.
В простых молекулах анализ симметрии граничных орбиталей позволяет сделать заключение о возможности согласованной ЭС. Например, симметрии занятой s-МО молекулы Н2 и свободной s*-МО молекулы I2 не позволяют реализоваться циклическому переходному состоянию
Это же касается и разрыхляющей s*-МО H2 и высшей занятой s-МО I2 . Граничные ВЗМО и НСМО двух молекул этилена имеют разную симметрию и не могут образовать 4-членного переходного состояния при протекании ЭС
Занятая p-МО одной молекулы этилена
не может перекрываться синхронно со свободной p*-МО второй молекулы. Симметрия этих МО различна (относительно плоскости, проходящей перпендикулярно связи С-С через ее центр). В реакции бутадиена с этиленом, НСМО C4 H6 (p1 *-C4 H6 ) имеет одинаковую симметрию с ВЗМО C2 H4 и процесс протекает по согласованному 6-центровому механизму
Аналогично и для перекрывания p*-C2 H4 и НЗМО C4 H6 (p2 -C4 H6 ).
Запрещенными по симметрии как элементарные стадии являются реакции присоединения молекул H2 , Cl2 , HCl, HF, HCN к кратным связям олефинов и алкинов (через 4-членное циклическое переходное состояние).
Реакции нуклеофильного и электрофильного присоединения и замещения, протекающие через линейные переходные состояния разрешены по симметрии. Участие переходных металлов (d-орбитали и d-электроны) в ЭС снимает запреты по симметрии и делает реакции согласованного присоединения по кратным связям металлосодержащих фрагментов разрешенными ЭС.
,
,
,
Разрешены по симметрии орбиталей также реакции присоединения молекул НХ к координированным атомом металла алкенам.
Правило сохранения 16-18 электронной оболочки Толмена в элементарных стадиях
Уже давно было отмечено (Сиджвик, 1929), что в стабильных комплексных соединениях общее количество электронов вокруг атома металла равно числу электронов ближайшего инертного газа. Это число электронов было названо эффективным атомным номером (ЭАН). В случае d -металлов число электронов в валентной оболочке металла, связанного с лигандами, должно быть равно 18 (d10 s2 p6 ). Такая оболочка и считается устойчивой. Например, Ni(CO)4 : Ni0 d10 , CO – 2-х электронный лиганд. Следовательно, 10 + 8 = 18. Для расчета числа электронов в комплексе металла необходимо сложить число электронов в валентной оболочке атома металла (или иона) и число электронов, предоставляемых нейтральными лигандами (или анионами). Для этого используют ковалентную и ионную модели химической связи. В первом случае комплекс включает ионы Mn + , X– и нейтральные лиганды L, а во втором – атомы металла, нейтральные группы X (гомолитический разрыв связи M–X) и нейтральные лиганды L. Например, в комплексе HMn(CO)5 в валентной оболочке Mn имеем для ионной модели:
H– (2 эл) + Mn+ (6 эл) + 5CO (10 эл) = 18 эл.
для ковалентной модели:
H· (1 эл) + Mn0 (7 эл) + 5CO (10 эл) = 18 эл.
В таблице 2.1 приведены некоторые лиганды, их обозначения и количества электронов, предоставляемых металлу в рамках ковалентной и ионной моделей.
Таблица 2.1
Лиганды |
Символ лиганда |
Ковалентная модель |
Ионная |
Me, Ph, H, Cl, OH, CN |
X |
1 эл |
2 эл |
CO, NH3 , H2 O, PR3 , R2 S |
К-во Просмотров: 306
Бесплатно скачать Реферат: Квантово-химические правила отбора элементарных стадий
|