Реферат: Лекции по математической статистике

Значение стандартизованных данных Z позволяют преобразовать множество x в произвольную шкалу с удобными характеристиками среднего и стандартизованного отклонения. Сами оценки Z могут быть отрицательными или содержать дроби. Мы избавимся от этих шероховатостей, умножая стандартизованные данные на константу и прибавляем к ним константу.

с z – будет иметь стандартное отклонение

, где с, d – константы – будут иметь среднее равное d .

Третий момент

Асимметрия – это свойство распределения частот. На практике симметричные полигоны и гистограммы не встречаются и чтобы выявить и оценить степень асимметрии, вводят следующую меру:

В единицах стандартного отклонения асимметрия равна:

Асимметрия бывает положительной и отрицательной. Положительная сдвигается влево, а отрицательная – вправо.

Чтобы упростить вычисление Ass можно использовать следующую формулу:

Асимметрия в этом уравнении принимает значения от –3 до +3

Четвертый момент

Эксцесс – это мера крутости кривой распределения. Унимодальная кривая распределения может быть островершинной, плосковершинной, средне вершинной.

Эксцесс для стандартных данных:

Характер распределения Величина эксцесса

Нормальное

Островершинное

Плосковершинное

3

больше 3 и может быть очень большим

больше нуля, но меньше 3

Эти четыре момента составляют набор особенностей распределения при анализе данных.

Нормальное распределение

Нормальное распределение лучше всего описывается кривой созданной ДеМуавром по следующей формуле:

где U – высота кривой над осью x , t и μ – числа, которые определяют положение кривой относительно числовой оси и регулируют ее размах. Для μ=0, t =1 график принимает вид:

Эта кривая при μ=0, t =1 получила статус стандарта, ее называют единичной нормальной кривой , то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой. Созданы статистические таблицы со значениями площади под единичной нормальной кривой влево от любой точки на оси z в (-3; 3). Общая площадь под кривой равна 1. И все остальные площади рассматривают как процент от целого.

Свойства нормальных кривых:

Семейство нормальных кривых включают в себе все кривые, которые можно получить по данной формуле, отличающиеся друг от друга только парой значений t и μ .

1. 68% площади лежит в интервале

2. 95% площади лежит в интервале

3. 99,7% площади лежит в интервале

Если x имеет нормальное распределение со средним μ и стандартным отклонение t , то z равное характеризуется распределением со средним равным нулю и стандартным отклонением равным 1. Площадь между двумя значениями x в нормальном распределении равна площади между ux стандартизованными величинами в единичном нормальном распределении. Нормализованную кривую изобрели для решения задач теории вероятности, но оказалось на практике, что она отлично аппроксимирует распределение черт при большом числе наблюдений для множества переменных. Можно предположить, сто не имея материальных ограничений на количество объектов и время проведения эксперимента, статистическое исследование приводило к нормально кривой.

К-во Просмотров: 524
Бесплатно скачать Реферат: Лекции по математической статистике