Реферат: Матанализ
37 Определённым интегралом от ф-ии f(x) на отрезке (a; b) называется предел интегральной суммы Sn, когда n→∞ (Δxi→0)
Cв-ва опр. интеграла:
(все интегралы на отрезке от А до В)
1 ∫С·f(x)dx=C·∫f(x)dx
2 ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx
3 ∫f(x)dx=-∫f(x)dx
4 Если f(x)≤g(x) на (A,B), то ∫f(x)dx≤∫g(x)dx
5 Если на (А,В) m=minf(x) M=maxf(x)то m(B-
-A)≤∫f(x)dx≤M(B-A)
6 Если f(x) непрерывна на (A,B) то сущ. также точка
С∈(A;B) ∫f(x)dx=f(C)·(B-A)
7 Если f(x) непрерывна на (А,В) то ∫f(x)dx существует
8 ∫f(x)dx=∫(a→d)f(x)dx+∫(d→b)f(x)dx
9 Формула Ньютона-Лейбница:
∫f(x)dx=F(B)-F(A)→F`(x)=f(x)
38 Применение опр. ∫
1 Вычисление площадей (Н-Лейб)
Если на (А,В) f(x)>0 то S=∫f(x)dx
Если на (А,В) f(x)<0 то S=-∫f(x)dx
Если на (А,В) f(x)>g(x) то S=∫[f(x)-g(x)]dx
(действительно для всех вариантов расп. ф-ий)
2 Вычисление объёмов тел вращения
V=π∫f²(x)dx
39 Приближ. вычисление интегралов
1 Формула Н-Лейб.
2 Метод прямоугольника
(B-A)/n=h: ∫(A→B)f(x)dx~=h(f1+f2…+fn)
3 Формула трапеции ∫f(x)dx~=h(1/2·f0+f1+f2+…fn)