Реферат: Матанализ
(uv)`=u`v + uv`
Постоянный множитель можно выносить за знак
производной
(cu)`=cu`
Производная произведения нескольких
дифференцируемых ф-ий равна сумме произведений
производной каждого из сомножителей на все остальные
(uvw)`=u`vw+uv`w+uvw`
23 Производная частного двух ф-ий u(x)/v(x), если v(x)≠0
равна дроби, числитель которой есть разность произведений знаменателя дроби на производную числителя и числителя дроби на производную знаменателя есть квадрат прежнего знаменателя: (u/v)`=(u`v-uv`)/v²; v≠0
(u/c)`=1/c*u`
(c/u)`=-cv`/v² c=const
24 (xª)`=axªˉ¹
25 (LNx)`=1/x
(eª)`=eª
Для дифференцируемой ф-ии с производной, не равной
0, производная обратной ф-ии равна обратной величине
производной данной ф-ии
X`y = 1/Y`x
26 (sin x)`=cos x
(cos x)`=-sin x
(tg x)`=1/cos²x
(ctg x)`=-1/sin²x
27 Если y=f(u) и u=φ(x) – дифференцируемые ф-ии от своих аргументов, то производная сложной ф-ии существует и равна производной данной ф-ии по промежуточному аргументу и умноженной на производную самого промежуточного аргумента по незавмсимой переменной х
y`=f`(u)*u`
y=f(u(x)) Fx`=Fu`*Ux`
Пример:
y=(√x+5)³ y`=?
y=u³, где u=√x+5