Реферат: Матанализ
1Натуральные числа – 1,2,3,4, …., счёт предметов, указание порядкового номера. Натуральные числа также называют положительными целыми числами. Числа –1,-2, -3, …, противоположные натуральным называются отрицательными целыми числами. Число 0 тоже целое. Рациональные числа – целые и дроби (+,-) Вид М/N, где (N0)M и N- взаимно простые целые числа. Иррациональные - √2 все вышепереч-е + бесконечные непериодич. дроби. Все эти числа – действительные. Компл. число Z1=A1+iB1; i²=-1
2 Z1±Z2=(A1±A2)+i(B1±B2)
Z1*Z2=(A1+iB1)*(A2+iB2)
Z1/Z2=(a1+ib1)(a2-ib2)/(a2+ib2)(a2-ib2)=(a1a2+b1b2)+
i(b1a2-a1b2)\a2²+b2²=(a1a2+b1b2/a2²+b2²)+i* (b1a2-
a1b2/a2²+b2²)
3 Тигонометрическая форма комплексного числа
Z=a+ib=r*cosφ+i*r*sinφ=r*(cosφ+i*sinφ)
r – модуль; φ – аргумент. b – y; a – x.
4 Zª=rª(cos Aφ+i*sin Aφ)
5 ª√Z=ª√r(cos φ+2πk/а +i *sin φ+2πk/a) k∈(1;2;3…a-1)
Все корни А-ой степени лежат на окружности r=| Z |¹\а и являются вершинами правильного А-угольника, вписанного в эту окружность.
6 Переменная вел. Х, принимающая последовательно ( с возрастанием номера n ) значения х1,х2,х3..хN называется числовой последовательностью
1,1,1,1,1…1
1,1/2,1/3…1/N
1,-1,1,-1…(-1)ª
Xn,n∈N
Число А наз. пределом последовательности Хn если для любого сколь угодно малого положит. числа E>0 найдётся такой номер N(E), что как только n>N(E) то имеет место неравенство | Xn – A | < E
lim Xn = A
n→∞
Число А есть предел последовательности Xn если для любого ε> 0 найдётся такой номер N, начиная с которого (при n>N) все члены последовательности будут заключены в ε-окрестности какой бы она узкой ни была. Вне этой окрестности может быть лишь конечное число членов этой последовательности.
7 Если последовательность Хn монотонна и ограничена, то она имеет предел (сходится).
Cвойства пределов:
если Хn=С то lim Xn=C
n→∞
пусть lim Xn=A, a lim Yn=B тогда lim (Xn±Yn)=A±B
n→∞ n→∞ lim (Xn*Yn)=A*B
lim (Xn/Yn)=A/B ; B≠0
если Xn≤Yn для n∈N то lim Xn ≤ lim Yn
--> ЧИТАТЬ ПОЛНОСТЬЮ <--