Реферат: Матанализ
x→x0
lim (f(x)/φ(x))=b/c (c≠0)
x→x0
Если f(x)≤φ(x)≤g(x) и lim f(x)=lim g(x) =b то lim φ(x)=b
x→x0 x→x0 x→x0
если при этом b=f(x0); c=φ(x0) то св-во 2 можно записать:
(Если f(x) или φ(х) непрерывны в т. х0 то в т.х0
непрерывны сумма, разность, произведение и
частное(φ(х0))≠0 этих функций
Если ф-ия непрерывна в каждой точке отрезка, то она непрерывна на этом отрезке
16 Линейная ф-ия непрерывна в любой точке А∈(-∞;+∞)
y=kx+b=f(x)
f(A)=kA+b
k≠0 ⇒ | f(x)-f(a) |<ε | kx-b-ka+b | <ε
| k (x-f) | <ε
| k |*| x-a | <ε
| x-a | < ε/| k |=δ(ε)
y=ax²+bx+c (-∞;+∞)
17 y=Bª (B>0)
Докажем, что y=Bª непрерывна на (-∞;+∞)
lim Bª=1
a→0
| Bª-1 | <ε 1) B=1
2) B>1
-ε < Bª-1 < ε 1-ε < Bª < ε+1
LOGb(1-ε)<a<LOGb(1+ε)
min {-LOGa(1-ε); LOGa(1+ε)}= δε
| x | < δε
LOGaB