Реферат: Математичне програмування в економіці
б) стандартну (симетричну), де k = m; l = n, де усі функціональні обмеження мають вигляд нерівностей.
Будь-які задачу лінійного програмування можливо звести до канонічної задачі шляхом перетворення функціональних обмежень нерівностей у обмеження рівності доданням до нерівностей невідомих невід’ємних величин:
ai1 x1 + ai2 x2 + . . . + ain xn + yi = bi ;
де yi ³ 0; новим невідомим дають назви відповідно xn+1 ; xn+2 ; . . . ; хn + m ; та відповідно xj ³ 0 , де j = 1,2,3 . . . n; n + 1 . . . n + m;
функціональні обмеження набувають вигляд
n
S aij xj + yi = bi , де і = 1, 2, 3 . . . , m;
j=1
a11 x1 + a12 x2 + . . . + a1n xn + xn+1 = b1 ,
a21 x1 + a22 x2 + . . . + a2n xn + xn+2 = b2 ,
am1 x1 + am2 x2 + . . . + amn xn + xn+m = bm ,
кількість невідомих моделі xj ³ 0 збільшилась до n + m .
Слушне зауваження у підручнику – якщо знак нерівності ³, так додаткові невідомі треба віднімати від лівої частини нерівності.
Будь-яку задачу лінійного програмування можливо звести до стандартної задачі лінійного програмування шляхом віднімання з лівої частини рівняння додаткових невід’ємних невідомих частин.
Таким чином ми навчились зводити задачу лінійного програмування від мінімізації до максимізації; переходити від функціональних обмежень у вигляді нерівностей до обмежень – рівностей і навпаки; замінювати невідомі змінні від’ємні на невід’ємні. Введені додаткові невідомі змінні мають чіткий економічний зміст. так, наприклад, якщо у обмеженнях задачі лінійного програмування (нерівність) відбиваються витрати ресурсу та їх наявність, так додаткова зміна задачі (у формі рівняння) дорівнює обсягу невитраченого відповідного ресурсу. Слушне зауваження у підручнику – якщо змінні не є невід’ємною, так її можливо замінити на дві невід’ємні:
xi = ui – vi .
Система обмежень у вигляді рівностей сумісна, якщо є хоча б одно рішення; несумісна, якщо ранг матриці ½aij , i = 1,2,. . . n равен ( r ) , а ранг розширеної матриці (додан стовбець “bi ”) більше ніж ( r ); надмірна, якщо одне з рівнянь можливо отримати як лінійну комбінацію інших. У системі: n – кількість невідомих,
m – кількість рівнянь.
Якщо система сумісна та не є надмірною, так будемо вважати, що ранг її дорівнює (m); тоді:
m – базисні змінні,
(n – m) – вільні змінні, m < n.
Система у даному випадку має нескінченну кількість розв’язків, так як ми маємо можливість надавати вільним змінним будь-які значення.
Рішення системи рівнянь (обмежень) має назву базисного рішення , якщо усі вільні змінні дорівнюють нулеві. Сукупність значень невідомих (чисел) задачі математичного програмування, які задовольняють усім обмеженням задачі, мають назву припустимого рішення або плану.
Сукупність усіх припустимих рішень системи рівнянь є опукла множина. Або множина розв’язків задачі лінійного програмування є опуклою.
Базисне припустиме рішення задачі лінійного програмування відповідає одній з вершин або граней множини розв’язків.
Оптимальне рішення задачі лінійного програмування відповідає одному з базисних припустимих рішень, тобто досягається у вершині множини розв’язків, має другу назву – оптимальний план задачі лінійного програмування.
Геометрична інтерпретація множини допустимих розв’язків задачі лінійного програмування та графічний метод її розв’язування. /2/ стор. 165.
Розглянемо задачу лінійного програмування у формі стандартної задачі – з обмеженнями у вигляді нерівностей. З метою наочності розглянемо простіший випадок з двома невідомими змінними. Пригадаємо задачу про планування випуску продукції малим підприємством.
Z = 10 x 1 + 20 x 2 ; Z ® max;