Реферат: Математика в химии и экономике
Так, например, если процентное содержание составляет 70%, то соответствующая концентрация равна 0,7. Процентному содержанию 10% соответствует концентрация 0,1 и т.д.
Таким же способом определяются и весовые (массовые) концентрация и процентное содержание, а именно как отношение веса (массы) чистого вещества А
в сплаве к весу (массе) всего сплава. О какой концентрации, объемной или весовой, идет речь в конкретной задаче, всегда ясно из ее условия.
Встречается сравнительно немного задач, в которых приходится пересчитывать объемную концентрацию на весовую или наоборот. Для того чтобы это сделать, необходимо знать удельные веса компонент, составляющих раствор или сплав. Рассмотрим для примера двухкомпонентную смесь с объемными концентрациями компонент с1 и с2 (с1 +с2 =1) и удельными весами компонент d1 и d2 . Вес смеси может быть найден по формуле
G=V1 d1 +V2 d2
в которой V1 и V2 - объемы составляющих смесь компонент. Весовые концентрации компонент находятся из равенств
k1 =V1 d1 / (V1 d1 +V2 d2 )=c1 d1 /(c1 d1 +c2 d2 )=c1 d1 /(c1 (d1 -d2 )+d2 ) ,
k2 =V2 d2 / (V1 d1 +V2 d2 )=c2 d2 /(c1 d1 +c2 d2 )=c2 d2 /(d1 +c2 (d2 -d1 )) ,
которые определяют связь этих величин с объемными концентрациями.
Как правило, в условиях задач рассматриваемого типа встречается один и тот же повторяющийся элемент: из двух или нескольких смесей, содержащих компоненты A1 , А2 , А3 , ..., An , составляется новая смесь путем перемешивания исходных смесей, взятых в определенной пропорции. При этом требуется найти, в каком отношении компоненты A1 , А2 , А3 , ..., An войдут в получившуюся смесь.
Для решения этой задачи удобно ввести в рассмотрение объемное или весовое количество каждой смеси, а также концентрации составляющих их компонент A1 , А2 , А3 , ..., An . С помощью концентраций нужно “расщепить” каждую смесь на отдельные компоненты, как это сделано в формуле (1), а затем указанным в условии задачи способом составить новую смесь. При этом легко подсчитать, какое количество каждой компоненты входит в получившуюся смесь, а также полное количество этой смеси. После этого определяются концентрации компонент A1 , А2 , ..., An в новой смеси.
Проиллюстрируем сказанное выше на примере следующей задачи.
Задача1. Имеются два куска сплава меди и цинка с процентным содержанием меди р% и q% соответственно. В каком отношении нужно взять эти сплавы чтобы, переплавив взятые куски вместе, получить сплав, содержащий r% меди?
Решение. Составим иллюстративный рисунок к этой задаче (рис. 2). Концентрация меди в первом сплаве равна р/100, во втором сплаве q/100.
Если первого сплава взять х кг, а второго у кг, то с помощью концентраций (ясно, что речь идет о весовых концентрациях) можно “расщепить” эти количества на отдельные составляющие:
х=хр/100 (кг меди) +x(1-p/100) (кг цинка)
и
y=yq/100 (кг меди) +y(1-q/100) (кг цинка).
Количество меди в получившемся сплаве равно
хр/100+yq/100 (кг меди),
а масса этого сплава составит х+у кг. Поэтому новая концентрация меди в сплаве, согласно определению, равна
(хр/100+yq/100)/(х+у) .
По условию задачи эта концентрация должна равняться r/100:
(хр/100+yq/100)/(х+у)=r/100 ,
или
(хр+yq)/(х+у)=r .
Решим полученное уравнение. Прежде всего заметим, что уравнение содержит два неизвестных х и у. Нетрудно понять, что оба неизвестных однозначно не находятся. Концентрация получающегося сплава определяется не массой взятых кусков, а отношением этих масс. Поэтому в задаче и требуется определить не сами величины х и у, а только их отношение.
Отметим попутно, что выражение вида
F(x,y)=(ax+by)/(cx+dy) ,