Реферат: Математика в химии и экономике
За 4 года вклад увеличился на 108 000 рублей = 258 000 рублей – 150 000 рублей. Коэффициент наращивания по формуле Sn / S0 =1+n . p / 100 равен S4 /S0 = 1,72. Он показывает, что за 4 года первоначальный вклад S0 увеличился в 1,72 раза.
Пример 2.
Какую годовую ставку простых процентов выплачивает банк , если вклад 12 000 рублей через 3 года достиг величины 14 160 рублей ? Определите коэффициент наращивания.
Решение.
По условию, S0 = 12 000, S3 = 14 160, n = 3. Из соотношения Sn = So . ( 1 +n . p / 1 000 ) рублей имеем p = (S3 / S0 – 1 ) . 1 000 /n. Подставляем в полученное выражение заданные значения, вычисляем результат: p = 5,(9), т.е. p = 6% . Коэффициент наращивания равен S3 /S0 = 1,18.
2. Сложные проценты.
Если проценты начисляются не только на первоначальный вклад, но и на приросшие проценты, то такое начисление называют правилом сложных процентов. Это правило тесно связано с формулой определения концентрации раствора после n переливаний (формула 2).
Мы говорим, что имеем дело со “сложными процентами”, в том случае, когда некоторая величина подвержена поэтапному изменению. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на предыдущем этапе.
Рассмотрим сначала случай, когда в конце каждого этапа величина изменяется на одно и то же постоянное количество процентов - р%.
Некоторая величина S, исходное значение которой равно S0 , в конце первого этапа будет равна
S1 =S0 +p/100 х S0 = S0 (1+p/100) .
В конце второго этапа ее значение станет равным
S2 =S1 +p/100 х S1 = S1 (1+p/100) = S0 (1+p/100)2 .
Здесь множитель 1+p/100 показывает, во сколько раз величина S увеличилась за один этап. В предыдущих задачах о концентрациях эту роль играл множитель
1-a/V0 .
В конце третьего этапа
S3 =S2 +p/100 х S2 = S0 (1+p/100)3 ,
и т. д.
Нетрудно понять, что в конце n-го этапа значение величины S определится формулой Sn = S0 (1+p/100)n . (формула 4)
Формула (4) является исходной формулой при решении многих задач на проценты.
Пример3. Сберкасса выплачивает 3% годовых. Во сколько раз увеличится величина вклада через 2 года?
Решение. Пусть величина вклада составляет S0 руб. Тогда через 2 года эта величина станет равной S2 = S0 (1+p/100)2 = (1,03)2 S0 = 1,0609 S0
Ответ. В 1,0609 раза.
Приведем обобщение формулы (4) на случай, когда прирост величины S на каждом этапе свой.
Пусть величина S в конце первого этапа испытывает изменение на p1 %, в конце второго этапа - на р2 %, в конце третьего этапа - на p3 % и т. д. Если pk >0, то величина S на этом этапе возрастает, если pk <0, то величина S на этом этапе убывает.
Как говорилось выше, изменение величины S на р% равносильно умножению этой величины на множитель 1+p/100. Поэтому окончательный вид искомой формулы такой:
Sn = S0 (1+p1 /100) (1+p2 /100)... (1+pn /100) . (формула 5)
Здесь S0 - первоначальное значение величины S.
Иногда в задачах на составление уравнений встречается понятие “средний процент прироста”. Под этим термином понимают такой постоянный процент прироста, который за n этапов давал бы такое же изменение величины S, которое она получает в действительности, при неравных поэтапных процентах изменения.