Реферат: Математика в химии и экономике
F(x,y)=(ax/y+b)/(cx/y+d)=j(x/y)
При этом уравнение F(x,y)=С позволяет найти это отношение.
Запишем уравнение задачи в следующем виде:
x(p-r)=y(r-q) .
Рассмотрим возможные случаи:
1) p=r=q .
В этом случае концентрации всех сплавов одинаковые и уравнение показывает, что имеется бесчисленное множество решений. Можно взять сколько угодно первого сплава и сколько угодно второго сплава.
2) p=r¹q .
В этом случае уравнение приобретает вид
х x 0=у(r-q),
откуда находим: х - любое, у=0. Физический смыслу этого решения понятен: если концентрация сплава, который требуется получить, совпадает с концентрацией первого сплава, но не равна концентрации второго сплава, то первого сплава можно взять сколько угодно, а второго сплава не брать вовсе.
3) p¹r=q .
Получаем уравнение
x(p-r)=y x 0
откуда находим: у - любое, х=0.
4) p¹r , p¹q , r¹q .
В этом случае можно написать
x=y(r-q)/(p-r) .
Поскольку у¹0, то
x/y = (r-q)/(p-r) .
Это значение будет давать решение задачи, если выполняется неравенство
(r-q)/(p-r)>0
которое, как нетрудно показать, имеет место, если значение r заключено между значениями р и q. Таким образом, если p¹q, то можно получить сплав с любым процентным содержанием меди между р и q.
Несмотря на то, что этот пример весьма простой, он достаточно хорошо иллюстрирует основной метод решения задач, связанных со смесями. Рассмотрим еще одну задачу.
Задача 2. Три одинаковые пробирки наполнены до половины растворами спирта. После того как содержимое третьей пробирки разлили поровну в первые две, объемная концентрация спирта в первой уменьшилась на 20% от первоначальной, а во второй увеличилась на 10% от первоначального значения. Во сколько раз первоначальное количество спирта в первой пробирке превышало первоначальное количество спирта во второй пробирке?
Решение. Введем в рассмотрение объем половины пробирки V0 и концентрации растворов спирта в каждой из пробирок с1 , с2 и с3 . Тогда первоначальное количество спирта в первой пробирке равно V0 с1 , во второй V0 с2 , в третьей V0 с3 (рис. 3).
Для того чтобы решить задачу, подсчитаем количество спирта в первой и второй пробирках после того, как туда добавят содержимое третьей пробирки. Эти количества будут равны:
в первой пробирке