Реферат: Методика преподавание темы Обыкновенные дроби в школьном курсе математики
Пример. Сократим дробь 48/80. Чтобы получить равную ей несократимую дробь, необходимо числитель и знаменатель данной дроби разделить на их наибольший общий делитель. Найдем его: Д (48;80) = 16. Разделив 48 на 16 и 80 на 16, получаем, что 48/80 = 3/5. Дробь 3/5 - несократимая.
Приведение дробей к общему знаменателю- это замена дробей равными им дробями, имеющими одинаковые знаменатели.
Общим знаменателем двух дробей m/n и p/q является общее кратное чисел n и q, а наименьшим общим знаменателем- их наименьшее общее кратное К (n,q).
Пример. Приведём к НОЗ дроби 8/15 и 4/35. Разложим числа 15 и 35 на простые множители: 15=3*5, 35=5*7. Тогда К (15,35)=3*5*7=105. Поскольку 105=15*7=35*3, то = 8/15 = 8*7/15*7 = 56/105, 4/35 = 4*3/35*3 = 12/105 .
Сложение и вычитание.
Пусть отрезки a,b,c таковы, что c= a+b и при выбранной единице длины ea= е, b= e (рис.2). тогда c= a+b = e+ e = 6e1= 7e1 = (6+7)*е1 = 13е1 = е1, т.е. длина отрезка е выражается числом, которое целесообразно рассматривать, как сумму чисел 6/4 и 7/4 .
a b
c
e
e1
Рис.2.
Определение: Если положительные рациональные числа представлены дробями m/n и p/n , то суммой чисел a и b называется число, представляемое дробью m+p/n .
m/n + p/n = m+p/n(1)
Если положительные рациональные числа представлены дробями с разными знаменателями, то эти дроби приводят к НОЗ, а потом складывают по правилу (1). Например: 5/12+2/15=25/60+8/60=25+8/60=33/60=11/20 .
Сумма любых двух положительных чисел существует и единственна. Сложение положительных рациональных чисел подчиняется переместительному и сочетательному законам:
a+b=b+a для любых a,b, Q+
(a+b)+c = a+(b+c) для любых a,b,c Q+
Различают правильные и неправильные дроби. Дробь называют правильной, если её числитель меньше знаменателя, и неправильной, если её числитель больше знаменателя или равен ему.
Пусть m/n - неправильная дробь. Тогда m n. Если m кратно n ,то в этом случае дробь m/n является записью натурального числа. Например, если дана дробь 15/3, то 15/3 =5. Если число m не кратно n, то разделим m на n с остатком: m=nq+r, где r
Поскольку r < n , то дробь r/n правильная => дробь m/n оказалась представлена в виде суммы натурального числа q и правильной дроби r/n . Это действие называют выделением целой части из неправильной дроби. Например, 13/4=4*3+1/4=4*3/4+1/4=3+1/4. Принято сумму натурального числа и правильной дроби записывать без знака сложения, т.е вместо 3+1/4 пишут 3 1/4 и называют такую запись смешанным числом.
Рассмотрим вычитание положительных рациональных чисел.
Определениe Разностью положительных рациональных чисел a и b называется такое положительное рациональное число c, что a=b+c
Понятие разности определено, а как практически из одного положительного рационального числа вычесть другое?
Пусть a=m/n, b=p/n, а разность а-b пусть представляется дробью x/n. Найти x . По определению разности m/n=p/n+x/n, а по правилу (1) p/n+x/n=p+x/n. Таким образом, m=p+x, но m, p и x _числа натуральные, а для них эта запись означает, что x=m-p.
Приходим к следующему правилу:
M/n-p/n=m-p/n (2)
Умножение и деление.
На рис.3 приведены такие отрезки : a, e, и e1, что a=11/3e; e=6/5e1. Надо узнать, каким будет значение длины данного отрезка а при единице длины е1. Так как 3a =11e, а 5е=6е1, то, умножив первое равенство на 5, а второе на 11, получим 5*3а=11*5е и 11*5е=6*11е1, или 15а=66е1. Последнее равенство означает, что а=66/15е1, т.е. длина отрезка а при единице длины е1 выражается числом 66/15, которое целесообразно рассматривать как произведение 11/3 и 6/5.