Реферат: Методика преподавание темы Обыкновенные дроби в школьном курсе математики
Эффективным упражнением для формирования представлений о долях является сравнение долей одной и той же величины, которое выполняется чисто практически, с помощью наглядных пособий.
Например, предлагается сравнить доли 1/3 и 1/2 и поставить знак “>”, ”<”.
Учащиеся изображают доли, например, с помощью отрезков (рис.6). Сравнивают их и убеждаются, что 1/3 меньше, чем 1/2.
1/3
1/2
Рис.6
Решение задач на нахождение доли числа и числа по его доле также способствует формированию представлений о долях величины. В этом их основное назначение. Поэтому, решение задач на нахождение доли числа и числа по его доле выполняется на наглядной основе.
Во 2 классе рассматривается только простые задачи, а в третьем классе они включаются в составные.
Ознакомление с дробями.
Образование дробей, как и образование долей рассматривается с помощью наглядных пособий.
Разделите круг на 4 равные части. Как назвать каждую такую часть? Запишите. Покажите три четвертые доли. Вы получили дробь- три четвертых. Кто сможет записать эту дробь? Что показывает число 4 (на сколько равных частей разделили круг)? Что показывает число 3 (сколько таких частей взяли)? Аналогичным образом учащиеся получают и записывают другие дроби, объясняя, что показывает каждое число.
Для закрепления полученных знаний выполняются такие же упражнения как и при ознакомлении с долями: по данным иллюстрациям называют и записывают, какие дроби изображены, или же изображают дробь с помощью чертежа, рисунка. Уяснению конкретного смысла дроби помогают упражнения на сравнение дробей, а также решение задач на нахождение дроби числа.
Для сравнения дробей обычно используются иллюстрации с равными прямоугольниками (рис.7). Учащимся предлагают начертить в тетради прямоугольник, длина которого 16 см, а ширина 1 см. Это один прямоугольник. Запишем (в первом прямоугольнике записывают число 1). Начертите под первым прямоугольником такой же второй и разделите его на 2 равные части (выполняют). Какие доли получили (вторые, половины). Сколько вторых долей в целом прямоугольнике? Подпишите. Ниже начертите такой же прямоугольник и разделите его на 4 равные части. Как называется каждая часть? Сколько четвертых долей в целом прямоугольнике? Сколько четвертых долей в половине? Что больше: одна вторая или две четвертые? Начертите четвертый такой же прямоугольник и разделите его на 8 равных частей.
1 | |||||||
1/2 | 1/2 | ||||||
1/4 | 1/4 | 1/4 | 1/4 | ||||
1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 |
Рис.7
Как называются полученные доли? Сколько восьмых долей в целом? Сколько восьмых долей в четверти, в половине прямоугольника? Что больше: три восьмых или одна четвертая? Какой дроби равна одна вторая?
Ответы на все перечисленные вопросы дети дают, глядя на рисунок.
Предлагаются специальные вопросы на сравнение дробей:
1. Вставьте пропущенный знак ” > “ , “ < “ или “ = “
3/8*3/4 ; 4/5*1 ; 4/8*1/2 ;
-
Подбираете такое число, чтобы равенство (неравенство) было верным:
5/10=*/2 ; 3/8>*/4 ; 1/2<*/4
Выполняя такие и подобные упражнения, учащиеся прибегают к соответствующим иллюстрациям с прямоугольниками, или заново изображают дроби с помощью, например отрезков.
Конкретный смысл дроби очень ярко раскрывается при решении задач на нахождение дроби числа. Решение этих задач, как и задач на нахождение доли числа, выполняется с помощью соответствующих наглядных пособий.
Задачи на нахождение дроби числа должны предлагаться для устного и письменного решения. Различные упражнения с дробями следует чаще включать для устных и письменных работ на протяжении всего учебного года.
Изучение обыкновенных дробей по нетрадиционной системе во втором классе.
С целью расширения математического кругозора учащихся при изучении темы «Доли» термины: дробь, числитель и знаменатель, рассматривается образование, чтение, запись и сравнение дробей с числителем больше единицы.
Для формирования представления о дроби, используются решения текстовых задач. Первой учащимся можно предложить задачу: «Два брата разделили между собой поровну 6 яблок. Сколько яблок досталось каждому брату?»
Ученики самостоятельно записывают решение задачи: (6:2=3) и дают ответ на ее вопрос, объясняя выбор арифметического действия. Далее предлагается следующая задача: «Два брата разделили между собой одно яблоко поровну. Сколько яблок досталось каждому брату?»
Учитель берет одно яблоко и просит разделить его между братьями поровну. Как поступить в данном случае? Ученики предлагают разрезать яблоко на две равные части. Учитель разрезает яблоко, показывает одну из равных частей и спрашивает: «Как можно назвать эту часть яблока (половина)?». Почему (яблоко разрезали пополам)? Кто догадался, как можно по-другому назвать половину (одна вторая)? Докажите. (яблоко разделили на две равные части и взяли одну из частей).