Реферат: Методы исследования нелинейных систем
Представим дифференциальное уравнение 2-го порядка в виде системы
уравнений 1-го порядка:
(4)
где скорость изменения регулируемой величины.
В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.
Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.
. (5)
Это уравнение с разделяющимися переменными
. (6)
Рассмотрим несколько случаев
1. Пусть корни характеристического уравнения (3) имеют вид
(т.е. ). (7)
При этом переходной процесс описывается уравнениями
x = A sin (wt+j), (8)
y = Aw cos (wt+j),
т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.
На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).
Если обозначить
Уравнение эллипса можно получить решением уравнения фазовых траекторий
(9)
Состояние равновесия определяется из условия
,
при этом x0 = y0 = 0.
Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.
2. Пусть корни характеристического уравнения (3) имеют вид
(10)
При этом переходной процесс описывается уравнениями:
Из уравнения фазовых траекторий получим уравнение