Реферат: Методы исследования нелинейных систем
. (20)
На основании функциональной схемы и полученных передаточных функций элементов системы составляем структурную схему рис. 13
Для построения фазового портрета необходимо записать систему дифференциальных уравнений.
Рассмотрим свободное движение системы (b=0) при этом x = a.
Дифференциальное уравнение нелинейной системы имеет вид
(21)
Представим уравнение в виде системы уравнений:
(22)
Построим фазовый портрет. Для простоты построения фазового портрета делаем некоторые упрощения:
1) Пусть обратная связь по скорости – отсутствует (К = 0).
2) Характеристика нелинейного элемента однозначна (рис. 14).
При этом:
(23)
С учетом принятых допущений система уравнений упрощается.
(24)
Построим характеристику для каждой зоны.
Пусть – a £ x £ a, ¦(x) = 0.
При этом исходная система имеет вид:
(25)
Решение этого уравнения имеет вид , т.е. наклон фазовых траекторий всюду постоянный (отрицательный).
Определим равновесное состояние системы из условия:
(26)
Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [– а, а]. Фазовые траектории на участке – а< x < a представляют собой прямые с коэффициентом наклона -1/Т1 при различных значениях начальных условий.
На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.
Пусть х > a, . При этом исходная система нелинейных уравнений имеет вид
(27)
где ci - семейство изоклин, которое представляет собой прямые параллельные оси х, т.е. , где определяется из выражения для
. (28)