Реферат: Методы исследования нелинейных систем
Это уравнение семейства гипербол при изменении A (рис 5).
Рис. 5
Особая точка называется "седло". Уравнения асимптот (сепаратрис) при А = 0 имеют вид:
3. Пусть корни характеристического уравнения (3) имеют вид
(11)
Фазовая траектория имеет вид сворачивающейся спирали (рис. 6), а точка равновесия называется "устойчивый фокус".
Рис. 6
4. Пусть корни характеристического уравнения (3) имеют вид
(12)
Переходный процесс представляет собой расходящиеся колебания, фазовая траектория – разворачивающаяся спираль. Особая точка называется "неустойчивый фокус" (рис. 7).
Рис. 7
5. Пусть корни характеристического уравнения (3) имеют вид
(13)
Переходный процесс имеет апериодический характер. Особая точка называется "устойчивый узел" (рис. 8).
Рис. 8
6. Пусть корни характеристического уравнения (3) имеют вид
(14)
Особая точка называется "неустойчивый узел" (рис. 9).
Рис. 9
4. Методы построения фазовых портретов
Для построения фазовых портретов можно использовать различные методы: метод дифференциальных уравнений, метод изоклин, и др.
Метод дифференциальных уравнений . Сущность метода заключается в том, что по дифференциальным уравнениям отдельных участков нелинейного элемента строят соответствующие фазовые портреты на плоскости.
Метод изоклин – это метод линий постоянного наклона.
Пусть даны уравнения нелинейной системы:
(15)