Реферат: Моделирование процессов переработки пластмасс

Рис. 2.1. Положение координат при исследовании теплового процесса в неограниченной пластине.

Следовательно, задача является одномерной. Для одномерного теплового потока без внутреннего источника тепла уравнение теплопроводности сводится к виду: (2.11)

Обычно используют граничные условия третьего рода:

(2.12)

Рассмотрим случай, когда в начальный момент температура пластины во всех точках была одинакова и равна То. Это начальное условие записывается в виде:

(2.13)

Решение, полученное методом преобразования Лапласа, имеет вид:

(2.14)

Здесь — безразмерная температура;

— критерий Фурье (критерий гомохронности для процессов чистой теплопроводности );

- безразмерная координата;

— функция ошибок, где ;

Если коэффициент теплоотдачи очень велик (это эквивалентно заданию постоянной температуры на стенке), уравнение (2.14) упрощается:

(2.15)

Для прикидочных расчетов удобно пользоваться номограммой зависимости q от представленной на рис.2.2

Рис.2.2 Номограмма для определения безразмеоной температуры в сечении неограниченной пластины при

Если значение критерия Фурье велико, но не равно бесконечности, решение имеет вид:

(2.16)

Здесь (2.17)

где — корни характеристического уравнения

(2.18)

где Bi= aw/l — критерий Био.

Уравнение (2.18) имеет бесчисленное множество действительных положительных корней. Первые пять корней для различных значений критерия Био были вычислены Карслоу и Егером. Обычно на практике пользуются номограммами. Номограмма позволяющая определить безразмерную температуру при различных значениях критерях Био приведена на рис.2.3

Рис. 2.3 Номограмма для определения безразмерной температуры поверхности неограниченной пластины.

Ана­логичная номограмма, предназ­наченная для определения тем­пературы в центре пластины, при­ведена на рис.2.4.

Рис. 2.4 Номограмма для определения безразмерной температуры в середине неограниченной пластины

2.2.2 Неограниченный цилиндр.

Рас­смотрим неограниченный цилиндр радиуса R, температура поверх­ности которого остается неизмен­ной на протяжении всего процес­са теплообмена. Радиальное рас­пределение температур в началь­ный момент задано в виде некоторой функции Т( r ). Необходимо найти распределение температур определения в цилиндре в любой момент времени. Задачи такого типа встречаются при расчете процессов охлаждения полимерного волокна, затвердевания литников литьевых форм и т. п.

Дифференциальное уравнение теплопроводности для цилиндра

К-во Просмотров: 576
Бесплатно скачать Реферат: Моделирование процессов переработки пластмасс