Реферат: Моделирование процессов переработки пластмасс
(2.30)
Здесь ξ — корень уравнения
(2.31)
После определения ξ, которое может быть выполнено любым численным методом (например, методом итерации), можно определить температурные поля во всех трех областях (начальная твердая фаза, затвердевшее вещество и расплав):
(2.34)
(2.35)
(2.35)
2.3.3 Плавление с непрерывным удалением расплава.
Пусть твердое тело нагревается благодаря поступающему извне к его поверхности постоянному тепловому потоку q. При этом весь расплав непрерывно удаляется. Примем плоскость, на которой происходит плавление, за плоскость с координатой х = 0 и будем считать, что твердое тело в областих > 0 движется относительно этой плоскости со скоростью υ. Следовательно, массовый расход расплава,Qm , отнесенный к единичной ширине, равен:
(2.36)
В установившемся режиме температура в областих > 0 описывается выражением:
(2.37)
Из дифференциального уравнения теплопроводности следует, что тепловой поток в стационарном режиме равен нулю. Следовательно, количество тепла, подведенного извне в единицу времени, должно быть равно количеству тепла, отводимого в единицу времени с расплавом:
(2.38)
Определив υ из соотношения (2.38), можно рассчитать распределение температур в твердом теле по формуле (2.36). Рассмотренные три случая наиболее типичны для процессов переработки полимеров, так как любой реальный процесс плавления можно свести к одному из них.
2.4.Теплопередача в потоках расплава
Передача тепла в движущейся жидкости происходит по механизму конвективного теплообмена, который осуществляется как за счет переноса тепла током жидкости, так и за счет теплопроводности самой жидкости. Аналитическое решение дифференциальных уравнений теплопроводности в случае конвективного теплообмена удается получить лишь при введении большого числа упрощений. Поэтому для практических целей используют результаты экспериментальных исследований, представленные в виде зависимостей между соответствующими критериями подобия. Обычно при изучении теплопередачи конвекцией принимаются следующие допущения:
1) на границе с поверхностью нагрева (охлаждения) соблюдаются условия прилипания; 2) физические параметры жидкости (теплоемкость, теплопроводность, плотность и вязкость) сохраняют неизменное значение для всего потока; 3) лучистый теплообмен между поверхностью нагрева (охлаждения) и потоком жидкости происходит независимо от контактной теплоотдачи.
В настоящее время наибольшее распространение получили экс* периментальные исследования процессов стационарного теплообмена. Для описания процесса теплообмена обычно используется известное уравнение Ньютона:
(2.39)
где а — коэффициент теплоотдачи, определяющий количество тепла, подводимое (или отводимое) к жидкости в единицу времени через поверхность с единичной площадью;
Tw— температура стенки канала;
Тж — средняя температура жидкости.
По своему физическому смыслу коэффициент теплоотдачи является условной величиной и характеризует отношение коэффициента теплопроводности жидкости к толщине δ пристенного слоя, в котором происходит температурный скачок:
(2.40)
Использование методов теории подобия позволяет свести решение проблемы теплообмена в потоке жидкости к экспериментальному определению вида функциональной зависимости:
(2.41)
Здесь — критерий Нуссельта, характеризующий интенсивность
теплообмена;
Р r = Срμ/ l — критерий Прандтля, характеризующий соотношение между количеством тепла, поглощаемого жидкостью за счет изменения энтальпии, и количеством тепла, отводимого за счет теплопроводности;
Gr = gλP 2 lz ΔT /μ2 — критерий Грасгофа, характеризующий интенсивность теплообмена за счет свободной конвекции;