Реферат: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам

Граничные значения гармонической функции на окружности кольца мы будем предполагать заданными в форме функций от полярного угла и обозначим их соответственно через и .

Сопряженная с гармоническая функция будет вообще говоря, не однозначной, и фкп будет состоять из двух слагаемых: однозначной составляющей, могущей быть разложенной в ряд Лорана в кольце, и логарифм с вещественным коэффициентом:

, . (29)

Отделяя вещественную и мнимую части, мы получим решение поставленной задачи – задачи Дирихле в кольце, но здесь суммируется не так просто.

Существует более компактная и эффективная формула – интегральная формула Вилля для кругового кольца [2], [3].

§3. Интегральная формула Анри Вилля – проблема Дирихле

для кругового кольца (1912).

Пусть в плоскости комплексного переменного дано круговое кольцо , ограниченное окружностями

, ,

где заданное положительное число <1.

Требуется найти регулярную и однозначную внутри области функцию , если известны значения ее вещественной части на границах кольца.

Для случая круга аналогичная задача решается известной формулой Шварца Г. (1869г) (п.1)

, (, ),

где с – действительная переменная.

Здесь предполагается, что радиус круга равен 1, а положение точки на окружности определяется аргументом этой точки, так что представляет значение вещественной части искомой функции в точке .

Нашей задачей является переход от круга к кольцу и построение формулы, аналогичной формуле (1).

Обозначим через и значения вещественной части искомой функции в точках с аргументом на внешней, соответственно внутренней, границе .

Основной нашей целью является выяснение того, как скажется на формуле переход от односвязной области к двусвязной.

Величина

,

где интеграл справа берется по окружности радиуса () с центром в точке , очевидно, не зависит от . Тем же свойством обладает и вещественная часть написанного интеграла.

Отсюда, приближая вначале к 1, а замечая, что в интеграле можно

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • К-во Просмотров: 301
    Бесплатно скачать Реферат: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам