Реферат: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам
Введение.
§1. О задачах Дирихле.
а) Задача Дирихле для круга – Задача Пуассона (классическая формулировка).
б) Обобщенная задача Дирихле
в) Видоизмененная задача Дирихле.
г) Классическая задача Дирихле для многосвязных областей.
д) Общая формулировка задачи Дирихле.
е) Задача Неймана.
§2. О задачах Шварца-Пуассона.
а) Интеграл Шварца для круга.
б) Интегральная формула Пуассона.
в) Интеграл Пуассона для внешности круга.
г) Задача Дирихле-Пуассона для полуплоскости.
д) Задача Дирихле для кругового кольца.
§3. Интегральная формула Анри Вилля – проблема Дирихле для кругового кольца (1912).
а) Преобразование интегральной формулы А.Вилля.
б) Функции Вейерштрасса (I (u ), (u ), (u )).
§4. О некоторых изменениях теории конформного отображения к краевым задачам.
а) Об структурном классе интегральных представлений.
б) О решении задачи Дирихле методом Чизотти для многосвязных областей.
в) Интегральная формула Чизотти для заданных областей – решение задачи Дирихле для соответствующих областей.
§5. Об интегральных представлениях Пуассона-Дирихле для заданных областей.
§6. Интегральная формула Чизотти-Пуассона-Дирихле для конечных трехсвязных областей.
Литература.
Введение.
В данной дипломной работе исследованы некоторые интегральные формулы (классические представления) аналитических и гармонических функций в заданных многосвязных областях.
Даны новые методы решения классических краевых задач методом интегральных представлений аналитических функций, используя метод конформного отображения канонической области (z ) на соответствующие области G (w ).
Используя фундаментальные интегральные формулы для круга и кругового кольца, автор обобщает задачи Пуассона, Дирихле, Дини, Шварца, Кристофеля-Шварца и Чизотти для многосвязных областей.
В частности, найдены интегральные формулы для эксцентрического кругового кольца, двух-трехсвязных областей. И нашли применение их к решению классических краевых задач типа Дирихле-Неймана.
Целью нашего исследования в предлагаемой работе являются:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--