Реферат: Общее понятие определённого интеграла, его геометрический и механический смысл
Этот предел называется определенным интегралом от функции f(x) на отрезке [a, b].
Соответствующее математическое выражение таково:
lim= λ→0
Знак ∫, представляющий растянутую S (начальную букву латинского слова «Summa»), символизирует здесь бесконечное увеличение числа слагаемых интегральной суммы. Буквы a и b, указывающие границы отрезка, на котором выполняется суммирование, называются пределами интегрирования.
Таким образом, определенным интегралом функции от f(x) в границах от a до b называется предел интегральной суммы вида
при условии, что длина наибольшего частичного отрезка стремится к нулю.
Выясним теперь возможность непосредственного использования операции, которая привела к понятию определенного интеграла, для решения соответствующих задач. Ограничимся при этом двумя примерами на вычисление площадей.
Пример 1.
Вычислить площадь, заключенную между прямой y=x, осью Ox и прямой x=1.
Решение. Так как данная прямая пересекается с Ox в начале координат, то отрезок интегрирования здесь будет [0, 1].
1). Разбиением этого отрезка на n равных между собой частей получим точки деления с абсциссами:
2). В каждом из полученных n отрезков выберем правые концы, т.е.
Так как f(x) = x, то
и слагаемые интегральной суммы выразятся в виде
где i – номер элементарного отрезка и принимает значения от 1 до n.
3). Интегральная сумма выразится в виде
(здесь применена формула n членов арифметической прогрессии).
4). Находим предел этой суммы при n → ∞:
Таким образом, искомая площадь равна 1/2 кв.ед. Проведенное вычисление, явно невыгодное из-за своей громоздкости, знакомит с операцией, составляющей сущность определенного интеграла.
Пример 2.