Реферат: Основні властивості простору Соболєва
при
З умови фундаментальності в середньому в треба, що окремо при
Аналогічно, з умови еквівалентності й по нормі треба, що при
Відповідно до визначення простору існують функції й такі, що при а в середньому.
Ми приходимо до наступного найважливішого визначення. Нехай Тоді у визначені елемент із представником і елемент із представником називається узагальненій похідній (у змісті Соболєва) від При цьому пишуть:
З визначення узагальненій похідній видно, що вона визначається не локально, в окремих крапках, а глобально – відразу на всім відрізку Нехай так що Перейдемо до межі при в рівностях
(1.4)
(1.5)
і, відповідно до теореми про поповнення й визначення інтеграла Лебега, прийдемо до формул (1.2) і (1.3), де тепер похідні розуміються в узагальненому змісті, а інтеграл – у змісті Лебега. Для конкретних обчислень, зрозуміло, можна й потрібно користуватися формулами (1.4) і (1.5), взявши досить велике тобто замість ідеальних елементів скористатися їхніми гладкими наближеннями
1.3 Інше визначення узагальненої похідної
Нехай – множина всіх безупинно диференцюємих на відрізку фінітних функцій Якщо тепер безупинно дференцюєма на відрізку те для довільної функції справедливо наступна інтегральна тотожність:
(1.6)
перевіряється інтегруванням вроздріб. Цією тотожністю повністю визначається.
Допустимо, що, крім того, для будь-яких і деякої безперервної на відрізку функції
(1.7)
Віднімаючи ці тотожності, одержимо, що для будь-яких
Звідси, внаслідок щільності в на відрізку Виявляється, інтегральна тотожність (1.7) можна прийняти за визначення узагальненої похідної. Насамперед, справедлива наступна лема.
Лема 1. Якщо то для будь-яких справедливо тотожність (1.6).
Доказ. Нехай тоді для всіх маємо (1.6):
Внаслідок властивості безперервності скалярного добутку в останній рівності можна перейти до межі при В результаті ми одержимо тотожність (1.6) для будь-якої функції Лема доведена.
Лема 2. Нехай дані такі, що для всіх справедливо тотожність (1.7). Тоді (узагальнена похідна).
Доказ. Нехай а Тоді
при
для будь-якого