Реферат: Основні властивості простору Соболєва

(2.4)

Для доказу цієї тотожності скористаємося формулою Гаусса-Остроградського:

Приймемо

й одержимо

Оскільки

а те одержуємо (2.4).

Нехай тепер а інтеграли (2.4) розуміються в змісті Лебега. Функція називається узагальненим рішенням крайової задачі (2.2) – (2.3), якщо для будь-якої функції виконується інтегральна тотожність (2.4).

Доведемо, що для будь-якої правої частини узагальнене рішення крайової задачі (2.2) – (2.3) існує і єдино.

Для цього помітимо, що гильбертовий простір вкладений у гильбертовий простір тому що, по визначенню всяка функція належить також і й справедлива оцінка для кожної (див. п. 1.5):

Отже, по теоремі 4 для всякої функції існує єдина функція така, що для всіх

а це і є інтегральну тотожність (2.4).


Висновок

Простір Соболєва й тісно пов'язане з ним поняття узагальненої похідної в сенсі Соболєва були уведені в математичну практику академіком С.Л. Соболєвим і відіграють найважливішу роль у теоретичних і прикладних питаннях математичної фізики й функціонального аналізу. Поповнення простору гладких функцій деякими ідеальними елементами, які можна з будь-яким ступенем точності обчислити за допомогою елементів із приводить, з одного боку, внаслідок повноти до точності й закінчення багатьох математичних тверджень, а з іншого боку, зберігає всі обчислювальні можливості.

Таким чином, ми розглянули простори Соболєва, їхні основні властивості й застосування в математичній фізиці.


Список літератури

1. Треногін В.О. Функціональний аналіз. – К., 2006

2. Соболєв С.Л. Деякі застосування функціонального аналізу в математичній фізиці. – К, 2004

3. Куланін Е.Д., Норін В.П. 3000 конкурсних задач по математиці. – К., 2000

4. Гусєв В.А., Мордкович А.Д. Довідкові матеріали по математиці. – К., 2003

5. Сканаві М.М. Збірник задач по математиці. – К., 2006

К-во Просмотров: 272
Бесплатно скачать Реферат: Основні властивості простору Соболєва