Реферат: Основні властивості простору Соболєва

Зміст

1. Простір Соболєва

1.1 Загальне визначення

1.2 Простір

1.3 Інше визначення узагальненої похідної

1.4 Найпростіша теорема вкладення

1.5 Простір Соболєва й

2. Застосування просторів Соболєва в математичній фізиці

2.1 Доказ існування й одиничності узагальненого рішення рівняння Лапласа

Висновок

Список літератури


1. Простір Соболєва

1.1 Загальне визначення

Нехай у задана замкнута обмежена область Розглянемо лінійний простір речовинних функцій раз безупинно диференцюємих на Диференцюємость на замкнутій області можна розуміти в різних змістах. Ми будемо припускати, що у функції раз безупинно диференцюємі, причому кожна частинна похідна функції має межу при прагненні до будь-якої граничної крапки області так що в результаті її продовження на вона стає безперервної в Границя області передбачається досить гладкої. Крім того, звичайно ми будемо вважати область одно зв'язковий і задовольняючому такому додатковому обмеженням, які можуть знадобитися в тих або інших міркуваннях.

Скористаємося для стислості наступними позначеннями. Набір індексів називається мультиіндексом. Число називається довжиною мультиіндекса. Для позначення часток похідних приймемо

Уведемо в розглянутому вище лінійному просторі норму

(1.1)


Отриманий нормований простір позначається Його поповнення в нормі (1.1) позначається й називається простором Соболєва.

У прикладних задачах досить часто зустрічається випадок Загальноприйнятий наступне позначення: Простір Соболєва є гильбертовим простором – поповненням простору в нормі, породженої скалярним добутком

Нижче ми докладніше зупинимося на окремих випадках і тобто розглянемо простору Соболєва на речовинній осі й у тривимірному просторі.

1.2 Простір

Розглянемо на відрізку простір який складається із усіляких функцій безупинно диференцюємих на зі скалярним добутком

(1.2)

і відповідному цьому скалярному добутку нормою

(1.3)


є поповненням у цій нормі. Елементами відповідно до теореми про поповнення, є класи, що складаються з послідовностей фундаментальних в у середньому, точніше, таких, що

при

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 267
Бесплатно скачать Реферат: Основні властивості простору Соболєва