Реферат: Полный курс лекций по математике
2) z = 3 + 5i, = 3 - 5i, , z *
=9 + 25=34
Пример 5 Дано z = -1 + i, z
= 2 - 3i. Найти z = (1 + i)/(2 - 3i). Решение z = (1 + i)/(2 - 3i) = (1+ i)(2 +3i) / (2 – 3i)(2+3i) = (2 +2i +3i +3i²)/ (4+9) = (2 – 3 + 5i)/13 =
= -1/3 + (5/13)i. Чтобы выделить вещественную и мнимую часть числа z надо числитель и знаменатель дроби умножить на число сопряженное знаменателю.
Рассмотрим еще один подобный пример.
Произвести действие, выделить вещественную и мнимую части числа
(2 + i)/(1 + 2i).
Решение. (2 + i)/(1 + 2i) = (2+ i)(1 -2i) / (1 + 2i)(1 - 2i) = (2 +i - 4i - 2i²)/ (1 +4) = (2 + 2 - 3i)/5 = (4 - 3i)/5= 4/5 - (3/5)i.
Геометрическое изображение комплексного числа z = x + iy.
|

| |||
![]() | ![]() | ||
| |||
![]() |
|

Рис.1
Ось ох называется вещественной осью
Ось оу называется мнимой осью.
Вся плоскость хоу называется плоскостью комплексного переменного.
|






Тема 4. Аналитическая геометрия. Координатный метод. Прямая линия на плоскости.
Аналитическая геометрия - область математики, занимающаяся изучением геометрических задач методом координат. Основная идея аналитической геометрии проста: положение точки на плоскости можно описать двумя числами и, таким образом, перевести любое утверждение о точках в утверждение о числах. Основоположниками метода координат принято считать Рене Декарта (1596-1650) и Пьера Ферма (1601-1665).
Декартова прямоугольная система координат на плоскости задается так: выбираются две взаимоперпендикулярные прямые с выбранным положительным направлением на каждой прямой - оси координат, точка пересечения прямых – начало координат. Выбирается на осях координат единица масштаба.
![]() |
Рис 1
Ось ох – ось абцисс.
Ось оу – ось ординат
О – точка пересечения осей, начало координат.
Положение всякой точки плоскости определяется ее расстоянием от осей координат. Эти расстояния называются координатами точки. Например, точка М имеет координаты х и у – М(х,у). Рис 1.
х – абцисса точки М, у – ордината точки М.
Координатам приписывают знаки, зависящие от расположения точки в различных частях координатной системы.
Пример. Построить точки: А(3,2); В(-1,4); С(-2,0); Д(-1,-1/2); Е(1,-1).
Рис 2.
![]() |
0