Парабола. Параболой называется геометрическое место точек, одинаково удаленных от данной точки (фокуса) и данной прямой (директрисы).
Каноническое уравнение параболы имеет два вида:
1) у²= 2рх – парабола симметрична относительно ох (рис.3)
2) х²= 2ру – парабола симметрична относительно оу (рис.4)
РИС.3
0
???.4
М (х,у) – произвольная точка парабола,
(х,у) – текущие координаты произвольной точки,
х = -р/2 – уравнение директрисы.
FM = d, где d – расстояние от точки М до директрисы.
В обоих случаях вершина параболы находится на оси симметрии в начале координат 0.
Парабола у² = 2рх имеет фокус F (р/2) и директрису х = - р/2
Парабола х = 2ру имеет фокус F (р/2) и директрису у = - р/2
Пример 3. Построить параболы заданные уравнениями:
1) у² = 4х; 2) у² = -4х; 3) х² =4у; 4) х² =-4у; а так же их фокусы и директрисы и написать уравнения директрис.
Ответ: 1)
0 0
y² = - 4x, p=2, F(-1,0)
х = -1 – уравнение директрисы | |
y² = 4x, p=2, F(1,0)
х = -1 – уравнение директрисы
3)
|
|
К-во Просмотров: 426
Бесплатно скачать Реферат: Полный курс лекций по математике
| |