Реферат: Поняття фракталів
xn+1 =axn +byn +e
yn+1 =cxn +dyn +f
Його можна подати в матричному вигляді
Так, наприклад, розглянуте перетворення можна записати у вигляді
У загальному випадку афінне перетворення на площині задається шістьма незалежними дійсними числами. Два числа e і f описують звичайну трансляцію, а чотири числа а, b, с, d задають довільне лінійне перетворення при незмінному положенні початку координат (0;0).
2.4 Метод простої заміни
2.4.1 Серветка Серпінського
Фрактал серветка Серпінського може бути побудований як за допомогою методу простої заміни, який застосовують для побудови регулярних фракталів, так і за допомогою методу IFS.
Розглянемо алгоритм побудови, заснований на методі простої заміни. Правильний трикутник ділений середніми лініями на чотири рівні трикутники і внутрішність центрального викидаємо. З трьома трикутниками, що залишилися, робимо те ж саме і так нескінченне число разів. Після певного числа викидань залишається множина S, представлена на мал. 9, яка є серветкою Серпінського.
Мал.9.
Фрактальна розмірність серветки Серпінського підраховується по формулі D=ln3/ln2=1,5849. Серветка має нульову площу, оскільки неважко перевірити, що в процесі її побудови була виключена площа, в точності рівна площі вихідного трикутника. Про це ж свідчить і значення фрактальної розмірності D<2, яка менше розмірності площини, на якій знаходиться цей об'єкт.
Всім відомий трикутник Паскаля (мал.10) за допомогою якого обчислюють коефіцієнти розкладу виразу виду . Починаючи з трикутника, що складається з одиниць, обчислюють значення на кожному наступному рівні шляхом додавання сусідніх чисел; останньою ставлять одиницю.
Мал.10
Таким чином можна наприклад визначити, що:
.
Мал.11
Цей трикутник можна перетворити на привабливий фрактальний візерунок (мал.11), якщо замінити непарні коефіцієнти одиницями, а парні — нулями.
Візерунок демонструє властивості коефіцієнтів, що використовується при «арифметизації» комп’ютерних програм, що перетворює їх в алгебраїчні рівняння.
2.4.2 Дракон Хартера-Хейтуея
Для більшості регулярних фракталів фрактальна розмірність D менша, ніж розмірність d того простору, в якому знаходиться даний фрактальний об'єкт. Нерівність D < d відображає факт некомпактності фрактала, причому чим більше розрізняються величини D і d, тим більше рихлим є фрактал. Існують фрактали, які щільно заповнюють простір, в якому вони знаходяться, так що їх фрактальна розмірність D = d. Одним з прикладів такого роду є криві Пеано (Peano curves). Дракон Хартера-Хейтуея (мал.12) є прикладом кривої Пеано, для якої область, яку вона заповнює на площині, має химерну форму.
Мал.12
Перші чотири кроки його побудови представлено на мал.12