Реферат: Преобразование Лапласа

быстро убывает с ростом Q экспоненту в (4) можно разложить в ряд.


Тогда

где -середина потери энергии на единице длины пути. Подставим это разложение в (6) и сделаем замену переменных

Тогда (6) перейдет в:

Вычисляя, интеграл с помощью вычетов и возвращаясь от переменной к переменной E, получаем:

(7)

Экспонента в формуле (7) есть вероятность того, что частица избежит поглощения на пути, где энергия меняется от Е0 до Е. Если сечение поглощения равно нулю, то

(8)

Формула (8) имеет простой физический смысл. По определению Ф(E)=dE есть средний путь, пройденный частицей за время, пока ее энергия меняется от E+dE до E.

В приближении непрерывного замедления dE/dl=b, откуда dl/dE=1/b, что совпадает с (8).

10. Преобразование Лапласа по координатам

Запишем кинетическое уравнение в приближении «прямо-вперед» (т.е. без учета отклонения частиц при рассеянии), для частиц, испускаемых моноэнергетическим источником, который находится в начале координат:

(208)

(209)

Поскольку частицы испускаются в положительном направлении оси Оz, в области z<0 плотность потока равна 0 и область изменения z в уравнении (208) следует считать полубесконечный интервал (0,¥). Это обстоятельство позволяет применить для решения уравнения (208) преобразование Лапласа по координатам:

(210)

где трансформанта Лапласа Ф(l,E) выражается через плотность потока следующим образом:

(211)

Умножим обе части уравнения (208) на и проинтегрируем по z от 0 до ¥. Преобразовав первый член интегрированием по частям с учетом граничного условия (209) и, использовав обозначение (211), получим:

После преобразования Лапласа остальных членов уравнения (208) приходим к уравнению для трансформанты плотности потока:

(212)

которое в отличие от (208) не содержит производных и является интегральным уравнением типа уравнения деградации энергии. Введя обозначение

(213)

Перепишем уравнение (312) в виде

К-во Просмотров: 805
Бесплатно скачать Реферат: Преобразование Лапласа