Реферат: Прикладная математика
УДК
Методические указания к выполнению курсовой работы по дисциплине ”Прикладная математика”/Сост.: Колемаев В.А., Карандаев И.С. и др. ГУУ, М.:2000.
Составители
Колемаев В.А. – профессор, доктор экономических наук
§15.
Карандаев И.С. - доцент. §§2, 4-10
приложения I, III, IX.
Малыхин В.И. - профессор, доктор физико-математических наук
§§11-14, приложения V, VII, VIII.
Гатауллин Т.М. - доцент, кандидат физико-математических наук
§§1, 3, приложение IV.
Прохоров Ю.Г. - доцент, кандидат физико-математических наук
Приложение VI.
Юнисов Х.Х. – старший преподаватель, приложение II.
Ответственный редактор
заведующий кафедрой прикладной математики
доктор экономических наук, профессор
Колемаев В.А.
Рецензент
кандидат экономических наук, доцент
кафедры экономической кибернетики
Васильева Л.Н.
© Государственный университет управления, 2000
Предисловие
Учебными планами всех специальностей ГУУ предусмотрено выполнение курсового проекта по дисциплине ²Прикладная математика². Как указано в программе этой дисциплины, прикладная математика состоит из двух основных разделов: теории вероятностей и ее приложений и математических методов исследования операций, которые включают также финансовую математику, что особенно важно для студентов-заочников, специализирующихся в области финансового и банковского менеджмента. Программой предусмотрено также изучение основных вопросов линейной алгебры.
Рекомендуется изучить основы теории систем линейных алгебраических уравнений по учебнику [1]. Напомним, что в задачах линейной оптимизации приходится в основном рассматривать системы линейных алгебраических уравнений в предпочитаемой форме, когда каждое уравнение системы содержит неизвестную, входящую только в это уравнение, причем с коэффициентом +1, а поиск оптимального решения сводится к направленному перебору базисных неотрицательных решений.Поэтому студент должен иметь ввиду, что нет смысла приступать к рассмотрению линейной производственной задачи курсовой работы, пока не изучены основы теории систем линейных алгебраических уравнений, изложенные в §§ 1, 2 главы 1 учебника [1].
Краткое и сжатое изложение основных вопросов исследования операций дано в работе [7], а разбор задач - в пособии [16]. При этом полезно предварительно ознакомиться с работой [11], где некоторые важнейшие вопросы программы изложены весьма подробно и доходчиво. Специальные вопросы исследования операций изложены в работах [6], [8] и [25].
Финансовая математика может быть изучена по работам [20], [23]. Необходимый для этого материал по теории вероятностей и математической статистике рекомендуется изучить по учебнику [2].
§ 1. ЦЕЛИ И ЗАДАЧИ КУРСОВОГО ПРОЕКТА
Выполнение курсового проекта по прикладной математике направлено на усиление связи обучения студентов с практикой совершенствования управления, организации современного производства, всего механизма хозяйствования.
В процессе работы над курсовым проектом студент не только закрепляет и углубляет теоретические знания, полученные на лекциях и на практических занятиях, но и учится применять методы исследования операций при постановке и решении конкретных экономических задач.
Цель курсового проекта - подготовить студента к самостоятельному проведению операционного исследования, основными этапами которого являются построение математической модели, решение управленческой задачи при помощи модели и анализ полученных результатов.
§2. Задание на курсовОЙ ПрОЕКТ
1. Сформулировать линейную производственную задачу и составить ее математическую модель, взяв исходные данные из приложения 1, где технологическая матрица А затрат различных ресурсов на единицу каждой продукции, вектор объемов ресурсов В и вектор удельной прибыли С при возможном выпуске четырех видов продукции с использованием трех видов ресурсов
компактно записаны в виде
c1 c2 c3 c4
а11 а12 а13 а14 b1
a21 a22 a23 a24 b2
a31 a32 a33 a34 b3
Преобразовать данную задачу к виду основной задачи линейного программирования, решить ее методом направленного перебора базисных допустимых решений, обосновывая каждый шаг процесса, найти оптимальную производственную программу, максимальную прибыль, остатки ресурсов различных видов и указать ²узкие места² производства.
В последней симплексной таблице указать обращенный базис Q-1 , соответствующий оптимальному набору базисных неизвестных. Проверить выполнение соотношения
H = Q-1 B
--> ЧИТАТЬ ПОЛНОСТЬЮ <--