Реферат: Расчет стержневых систем и бруса на растяжение, Расчет нагруженной балки, Экзаменационные вопросы по прикладной механике
Эквивалентная схема с правильным направлением данных и искомых величин (P,q,M,YE,YF) (рис. 4):
Дано:
Таблица 1: “Расположение элементов нагрузки”.
A1 |
A2 |
B1 |
B2 | C | D | L [м] |
2,5 | 1,0 | 1,5 | 2 | 0,2 | 1,2 | 3,1 |
Таблица 2: “Величины элементов нагрузки”.
P1[кН] |
P2[кН] |
M1[кН•м] |
M2[кН•м] | q [кН/м] |
-8,0 | 10,0 | 16 | 11 | 20 |
Знаки величин принимаются относительно направлений, обозначенных на рисунке.
1.1 Найти: YE-? ZE-? YF-? ZF-?
Решение:
Заменим опоры в точках E и F их реакциями. Таким образом несвободное тело EF становится свободным, и к нему можно применить условия равновесия. Для поперечных сил положительным принято направление по оси y ; положительным моментом - момент, сжимающий верхние волокна балки. Для расчета реакций опор распределенную нагрузку q заменим равнодействующей R, приложенной в середине отрезка CD действия нагрузки q, в точке с координатой (C+D)/2. R = q•Dl; Dl = D – С.
Условия равновесия тела EF :
еQyn = 0 : сумма поперечных сил
еQzn = 0 : сумма продольных сил
еMn = 0 : сумма изгибающих моментов
Силы P1, P2, R приложены перпендикулярно к оси z, поэтому их проекции на эту ось будут нулевыми по величине, еQzn = 0.
Уравнение суммы поперечных сил :
YE – q • (D – С) + P2 + P1 + YF = 0
Уравнение суммы изгибающих моментов относительно точки E :
– (D – С) • q • (С +D) / 2 + P2 • A2 – M1 + M2 + P1 • A1 + YF • L = 0
Знаки в уравнениях определены исходя из направлений, обозначенных на эквивалентной схеме нагрузки балки (рис.3), поэтому в уравнениях используются модули нагрузочных величин (ЅP1Ѕ,ЅP2Ѕ,ЅRЅ,ЅM1Ѕ,ЅM2Ѕ) и обозначаются без векторной черты. Возможные отрицательные значения искомых величин YE и YF будут означать противоположное их направление выбранному на схеме.
Из уравнения моментов вычисляем силу YF :