Реферат: Расчет стержневых систем и бруса на растяжение, Расчет нагруженной балки, Экзаменационные вопросы по прикладной механике

P2 – q • (z – z2)

z2 Ј z < z3

–YE + q • (z2 – z1) – P2 + q • (z3 – z2)

10,6–10,0+20•(1,2–1,0)=4,6

4 0

z3 Ј z < z4


4,6 5 0

z4 Ј z < z5


4,6 6 0

z5 Ј z < z6


4,6 7

P1

z6 Ј z < z7

–YE + q • (z2 – z1) – P2 + q • (z3 – z2) – P1

4,6 – 8,0 » –3,6*

* реакция, действующая на правый край VII участка - есть реакция опоры, совпадение ее численного значения с YF означает правильность вычислений.


1) Бесконечно близко для того, чтобы было правомочным утверждение, что найденные зависимости Q(z) и M(z) справедливы на всем рассматриваемом участке, при Zn1 Ј Z < Zn.



БИЛЕТ 5 Изгиб. Дифф. зав-ти при изгибе.

dM = Q • dz, Q = dM / dz, dQ / dz = d2M / dz2 = q.

производная от изгибающего момента по абсциссе сечения балки равна поперечной силе (теорема Журавского); вторая производная от изгибающего момента по абсциссе сечения балки равна интенсивности распределенной нагрузки.

БИЛЕТ 6 Основные гипотезы при изгибе.

Принцип Бернулли: плоские сечения до и после деформации остаются плоскими, нормальными к продольной оси балки.

БИЛЕТ 12 Косой изгиб. Определение напряж.


БИЛЕТ 14

Напряженное состояние в данной точке - совокупность напряжений на всех елементарных площадках, которые можно провести через какую-либо точку тела. Главные нормальные напряжения - если на грани кубика других нет (касательных напряжений). Тензор напряжения - перемещения при данной нагрузке ???

Закон парности касательных напряжений.

Дан брус произвольного сечения.

A - площадь сечения по нормали

Aa - площадь сечения под углом a к нормали. Aa= A / cos a.

проекция сил на направление sa :

sa•Aas1•A•cos a = 0

К-во Просмотров: 499
Бесплатно скачать Реферат: Расчет стержневых систем и бруса на растяжение, Расчет нагруженной балки, Экзаменационные вопросы по прикладной механике