Реферат: Расчёты на устойчивость
ла F =200кН. Материал Ст.3: sadm =160 МПа.
DFd/D= a = 0,8; l = 3м. Использовать методи-
ку расчёта по коэффициенту снижения до-
dl пускаемых напряжений.
0,6lРешение
z Запишем граничные условия:
1) при z =0: v = 0;
2) при z = 0: v¢¢ = 0;
3) при z = l : v = 0;
4) . при z = l : v¢¢ = 0
Рис.7 Подставим это в аппроксимирующий полином (6) и во вторую производную от него. В результате получим те же самые выражения для v¢и v¢¢, что и в примере 3. Различие будет состоять лишь в том, что в выражении для критической силы интеграл, стоящий в знаменателе придётся брать в пределах от 0 до 0,6l. Это легко понять, если вспомнить, что знаменатель в формуле (4) представляет собой удвоенное перемещение точки приложения силы, а оно зависит от укорочения части стержня, лежащей ниже сечения, в котором приложена сила.
l
144A2 EIx ò (z2 – lz)2 dz
0
Fcr = ¾¾¾¾¾¾¾¾¾¾¾» 19,53EIx / l2 .
0,6l
A2 ò (4z3 – 6lz2 + l3 )2 dz
0
Найдём коэффициент приведения длины. Для этого представим выражение для критической силы:
Fcr = 19,53EIx / l2 = p2 EIx / (p2 / 19,53)×l2 .
Сопоставляя полученный результат с формулой Эйлера (1), получим:
m2 = p2 / 19,53 Þm» 0,711.
Приведенная длина стержня ml = 0,711×300 » 213см.
Подберём размеры поперечного сечения. Определим геометрические характеристики. Площадь сечения:
A = pD2 (1 -a2 )/4 » 0,785D2 (1 – 0,82 ) » 0,283D2 .
Момент инерции:
Ix = pD4 (1 -a4 ) / 64.
Радиус инерции:
_____ ______ _______