Реферат: Рассеяние рентгеновских лучей на молекулах фуллерена
а) одна из первых трубок Рентгена, б) рентгеновская трубка конца XX века.
K – термо катод, А – высоковольтный анод, T – накал термокатода, Э – пучки ускоряемых электронов (штрихпунктирные линии), Р – потоки рентгеновских лучей (штриховые линии), О – окна в корпусе трубки для выхода рентгеновских лучей.
Согласно современным научным исследованиям, рентгеновские лучи – это невидимое глазом электромагнитное излучение с длиной волны, принадлежащей диапазону с примерными границами 10–2 - 10 нанометров.
Рентгеновские лучи испускаются при торможении быстрых электронов в веществе (при этом образуют непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (и дают линейчатый спектр).
Важнейшими свойствами рентгеновских лучей являются следующие свойства:
Лучи проходят через все материалы, в т. ч. непрозрачные для видимого света. Интенсивность проходящих лучей I уменьшается экспоненциально с толщиной x слоя вещества
I(x) = I0 exp(–m/x),(2.16)
где I0 – интенсивность лучей, падающих на слой облучаемого материала.
Коэффициент m характеризует ослабление потока рентгеновских лучей веществом и зависит от плотности материала r и его химического состава. Многочисленные эксперименты показали, что в первом приближении наблюдается зависимость
m~rZ4(2.17)
Потоки рентгеновских лучей проходят сквозь толстые доски, металлические листы, человеческое тело и т.д. Значительная проникающая способность рентгеновских лучей в настоящее время широко используется в дефектоскопии и медицине.
Рентгеновские лучи вызывают люминесценцию некоторых химических соединений. Например, экран, покрытый солью BaPt(CN) 4 при попадании рентгеновских лучей светится желто-зеленым цветом.
Рентгеновские лучи, попадая на фотоэмульсии, вызывают их почернение.
Рентгеновские лучи ионизируют воздух и другие газы, делая их электропроводными. Это свойство используется в детекторах, позволяющих обнаружить невидимые рентгеновские лучи и измерить их интенсивность.
Рентгеновские лучи обладают сильным физиологическим действием. Длительное облучение живых организмов интенсивными потоками рентгеновских лучей приводит к возникновению специфических заболеваний (т. н. «лучевая болезнь») и даже к летальному исходу.
Как уже было сказано ранее, рентгеновские лучи испускаются при торможении быстрых электронов в веществе и при переходах электронов с внешних электронных оболочек атома на внутренние (и дают линейчатый спектр). Детекторы, регистрирующие рентгеновские лучи базируются на свойствах рентгеновских лучей. Поэтому чаще всего в качестве детекторов используются: фотоэмульсии на пленке и пластинках, люминесцентные экраны, газонаполненные и полупроводниковые детекторы.
2.3. Дифракция волн
2.3.1. Дифракция и интерференция волн
Типичными волновыми эффектами являются явления интерференции и дифракции.
Первоначально дифракцией называлось отклонение распространения света от прямолинейного направления. Это открытие было сделано в 1665 году аббатом Франческо Гримальди и послужило основой для разработки волновой теории света. Дифракцией света представляла собой огибание светом контуров непрозрачных предметов и, как следствие этого, проникновение света в область геометрической тени.
После создания волновой теории выяснилось, что дифракция света является следствием явления интерференции волн, испущенных когерентными источниками, находящимися в различных точках пространства.
Волны называются когерентными, если разность их фаз остается постоянной с течением времени. Источниками когерентных волн являются когерентные колебания источников волн. Синусоидальные волны, частоты которых не изменяются с течением времени, являются всегда когерентными.
Когерентные волны, испущенные источниками, находящимися в различных точках, распространяются в пространстве без взаимодействия и образуют суммарное волновое поле. Строго говоря, сами волны не «складываются». Но если в какой-либо точке пространства находится регистрирующий прибор, то его чувствительный элемент будет приведен в колебательное движение под действием волн. Каждая волна действует независимо от других, и движение чувствительного элемента представляет собой сумму колебаний. Иначе говоря, в этом процессе складываются не
?????, ? ?????????, ????????? ???????????? ???????.
Рис. 3.1. Система двух источников и детектора. L – расстояние от первого источника до детектора, L’ – расстояние от второго источника до детектора, d – расстояние между источниками.
В качестве базового примера рассмотрим интерференцию волн, испускаемых двумя точечными когерентными источниками (см. рис.3.1). Частоты и начальные фазы колебаний источников совпадают. Источники находятся на определенном расстоянии d друг от друга. Детектор, регистрирующий интенсивность образованного волнового поля, располагается на расстоянии L от первого источника. Вид интерференционной картины зависит от геометрических параметров источников когерентных волн, от размерно