Реферат: Разработка формальной системы

А2*В4 = (0, 1*, -1, 0) * (-1, 1, 0, -1*) = (-1, 1, -1,0), т.е.

Операция инверсия.

Данная операция инвертирует пазл, т. е. заменяет выпуклости вогнутостями и наоборот, в результате чего получается новый пазл. Операция имеет вид: С = А-1.

П ример.

А = (0, 1, -1, 0)

А-1 = С = (0, -1, 1, 0), т. е.

6. Алгебраическая система.

Определение 7. Система трех множеств Œ = <А, Ω, R> называется алгебраической системой, где А – множество однотипных элементов, называемое носителем алгебры или базовым множеством, Ω – множество операций с областью определения и областью значений в множестве А, R – множество отношений на элементах множества А.

Множество А представляет собой множество всех пазлов, представленных в виде картежей, описанных выше.

Сигнатура алгебры Ω = { + , * , -1() , 0 , 1 }.

R = {<, <’, <”, >, >’, >”, =, =’, =”}

Согласно определению операций, мы получим пазл в виде картежа, описанного выше, значит мы получим элемент базового множества, что говорит о замкнутости операций.

7. Свойства операций.

Свойство единицы:

А + А-1 = А-1 +А = 1 – сильная единица:

Аi * 0 = 0 * Ai = A, i= - слабая единица;

Операция наложения.

1) Операция идемпотентна , поскольку для данной операции справедливо утверждение

A + A = A;

2) Операция коммутативна , поскольку для данной операции справедливо утверждение

A + B = B + A;

3) Операция не ассоциативна , поскольку для нее справедливо утверждение

A + (B + C) ¹ (A + B) + C.

Свойства по отношению к операции склеивание:

4) Операция не дистрибутивна слева , т. к.A + (B * C) ≠ (A + B) * (A + C)

5) Операция не дистрибутивна справа , т. к. (A * B) + C ≠ (A + C) * (B + C)

Операция склеивание.

Поскольку условие операции не выполняться для всех пазлов, то операция склеивания:

К-во Просмотров: 305
Бесплатно скачать Реферат: Разработка формальной системы