Реферат: Решение обратной задачи вихретокового контроля

Приведем основные положения, на основе которых будет построена модель нашей задачи:

  • ОК представляет из себя находящуюся в воздухе проводящую пластину толщиной Н состоящую из N плоско-параллельных слоев толщиной bi.

  • В пределах каждого слоя удельная электропроводность s имеет постоянное значение т.е. распределение s по глубине аппроксимируется кусочно-постоянной зависимостью.

  • Возбуждающая и измерительная обмотки ВТП заменяются нитевидными моделями. Следует отметить, что это предположение сказывается лишь на решении прямой задачи, а проведя интегрирование можно получить выражения для катушек конечных размеров.

  • Для численного моделирования реальных распределений ЭП применим пять типов аппроксимации: сплайном, кусочно-постоянную, кусочно-линейную, экспоненциальную и гиперболическим тангенсом. В процессе решения прямой задачи с их помощью вычисляются значения s в центральных точках слоев пластины.

2.4 Анализ литературы

2.4.1 Зарубежные методы решения

Решению обратной задачи ВТК посвящен ряд работ в зарубежных изданиях. Следует отметить монографию [38], в которой рассмотрены случаи импульсного возбуждения, а оперируют в частотной и временной областях напряженностью электрического поля.

Подход к решению квазистационарных задач рассмотрен в цикле статей [45-51]. Он основан на интегральной постановке задачи с помощью функций Грина[31-34,39]. Для иллюстрации рассмотрим решение обратной задачи ВТК согласно [49].

А. Прямая задача

Определим функцию v(r)=( s(r) - s0 )/s0 , где s(r) - произвольное распределение проводимости, а s0 - ее базовая величина. Функция v(r) может представлять собой как описание произвольного распределения проводимости (в этом случае для удобства полагаем s(r)=s0 вне некоторого ОК объема V, тогда v(r) отлична от нуля только в пределах V ) так и некоторого дефекта (для трещины v(r)=-1 внутри дефекта и равна нулю вне его).

Рассмотрим систему уравнений Максвелла в предположении гармонического возбуждения exp(-jwt) и пренебрегая токами смещения:

( 2.4.1)

где P(r)=[ s(r)-s0 ]ЧE(r)=s0 Ч v(r)ЧE(r) - может интерпретироваться как плотность диполей эффективного тока, причиной которого является вариация s(r)-s0.

Решение уравнений Максвелла можно представить в виде

( 2.4.2)

где Ei(r) - возбуждающее поле, а G(r|r’) - функция Грина, удовлетворяющая уравнениюѴѴ G(r|r’)+k2Ч G(r|r’)=d(r-r’) , k2=-jЧwЧm0 Чs0 , d(r-r’) - трехмерная дельта-функция.

Импеданс ВТП можно выразить как

( 2.4.3)

где интеграл берется по измерительной катушке, J(r) - плотность тока в возбуждающей катушке. Применяя теорему взаимности импеданс можно представить через возбуждающее поле:

( 2.4.4)

где интеграл берется по объему ОК.

В. Обратная задача

Пусть v(r) - оценка истинной функции vtrue(r), Zobs(m) - измеренный импеданс ВТП в точке r0 на частоте возбуждения w , m=(r0 ,w) - вектор в некоторой области определения M , Z[m,v] - оценка величины Zobs(m) на основе решения прямой задачи.

Определим функционал невязки измеренных и рассчитанных значений импеданса ВТП как :

К-во Просмотров: 496
Бесплатно скачать Реферат: Решение обратной задачи вихретокового контроля