Реферат: Решение обратной задачи вихретокового контроля

( 2.4.5)

Предположим, что для решения обратной задачи используется итерационный алгоритм типа метода спуска: vn(r)= vn-1(r)+a sn(r). Можно показать, что в случае метода наискорейшего спуска итерация имеет вид: vn(r)= vn-1(r)-aЧСF[ vn-1(r) ], где градиент функционала СF[v] можно определить как :

( 2.4.6)

где Re обозначает вещественную часть, * обозначает комплексную сопряженность.

Требуемый в (2.4.6) градиент импеданса можно определить как:

СZ(r) = -s0ЧE(r)ЧE*(r)

( 2.4.7)

где E*(r) - решение уравнения

( 2.4.8)

С. Аппроксимация при решении обратной задачи

Пусть электропроводность моделируется с помощью конечного числа переменных (например узловых значений некоторой аппроксимации), а вектор р состоит из этих переменных. Тогда выражение (2.4.7) принимает вид:

( 2.4.9)

где (СZ)j - j-ая компонента градиента импеданса.

Значение j-ой компоненты градиента невязки (2.4.6) можно представить как:

( 2.4.10)

Следует обратить внимание на то, что в случае дискретного пространства М (конечное число измерений) интеграл в (2.4.10) заменяется суммой.

С учетом приведенных преобразований итерация метода наискорейшего спуска принимает вид:

pjn = pjn-1 - (СFn-1)j

( 2.4.11)

где n - номер итерации.

D. Пример применения

В качестве примера рассмотрим функцию v(r) в виде v(r)=SciЧfi(r), i=1,N , где fi(r) - множество линейно независимых базовых функций с коэффициентами ci. Рассматривая коэффициенты ci в роли параметров аппроксимации (ci=pi ) получим из (2.4.9) для компонентов градиента импеданса:

( 2.4.12)

В случае проводящего ОК, состоящего из N параллельных слоев с проводимостью sj распределение электропроводности по глубине можно представить с помощью функций Хевисайда H(z) как s(z)=S sjЧ[ H( z-zj ) - H( z-zj+1 ) ].

К-во Просмотров: 488
Бесплатно скачать Реферат: Решение обратной задачи вихретокового контроля