Реферат: Решение обратной задачи вихретокового контроля
( 2.4.5)
Предположим, что для решения обратной задачи используется итерационный алгоритм типа метода спуска: vn(r)= vn-1(r)+a sn(r). Можно показать, что в случае метода наискорейшего спуска итерация имеет вид: vn(r)= vn-1(r)-aЧСF[ vn-1(r) ], где градиент функционала СF[v] можно определить как :
-
( 2.4.6)
где Re обозначает вещественную часть, * обозначает комплексную сопряженность.
Требуемый в (2.4.6) градиент импеданса можно определить как:
-
СZ(r) = -s0ЧE(r)ЧE*(r)
( 2.4.7)
где E*(r) - решение уравнения
-
( 2.4.8)
С. Аппроксимация при решении обратной задачи
Пусть электропроводность моделируется с помощью конечного числа переменных (например узловых значений некоторой аппроксимации), а вектор р состоит из этих переменных. Тогда выражение (2.4.7) принимает вид:
-
( 2.4.9)
где (СZ)j - j-ая компонента градиента импеданса.
Значение j-ой компоненты градиента невязки (2.4.6) можно представить как:
-
( 2.4.10)
Следует обратить внимание на то, что в случае дискретного пространства М (конечное число измерений) интеграл в (2.4.10) заменяется суммой.
С учетом приведенных преобразований итерация метода наискорейшего спуска принимает вид:
-
pjn = pjn-1 - aЧ(СFn-1)j
( 2.4.11)
где n - номер итерации.
D. Пример применения
В качестве примера рассмотрим функцию v(r) в виде v(r)=SciЧfi(r), i=1,N , где fi(r) - множество линейно независимых базовых функций с коэффициентами ci. Рассматривая коэффициенты ci в роли параметров аппроксимации (ci=pi ) получим из (2.4.9) для компонентов градиента импеданса:
-
( 2.4.12)
В случае проводящего ОК, состоящего из N параллельных слоев с проводимостью sj распределение электропроводности по глубине можно представить с помощью функций Хевисайда H(z) как s(z)=S sjЧ[ H( z-zj ) - H( z-zj+1 ) ].