Реферат: Решение задач линейной оптимизации симплекс – методом
- Бензин С – 150 руб.
Необходимо определить план смешения компонентов, при котором будет достигнута максимальная стоимость все продукции. При следующих условиях:
- Бензина каждого сорта должно быть произведено не менее 300 тыс..л.
- Неиспользованного крекинг бензина должно остаться не более 50 тыс.л.
Сводная таблица условий задачи:
Компоненты, используемые для производства трёх видов бензина. | Сорта производимого бензина | Объем ресурсов (тыс. л) | ||
А | В | С | ||
Алкилат | 400 | |||
Крекинг-бензин | 250 | |||
Бензин прямой перегонки | 300 | |||
Изопентат | 250 | |||
Цена бензина (рублей за 1 тыс.л.) | 120 | 100 | 150 |
1.2. Математическая постановка задачи
Исходя из условий задачи, необходимо максимизировать следующую целевую функцию:
(1.2.1)
при ограничениях
(1.2.2)
, где
В этих выражениях:
- объемы бензина А-го, В-го и С-го сорта соответственно.
Тогда
объёмная доля первой компоненты (алкилата) в бензине А.
объёмная доля первой компоненты (алкилата) в бензине В.
объёмная доля первой компоненты (алкилата) в бензине С.
и т.д.
Целевая функция выражает стоимость всей продукции в зависимости от объема производимого бензина каждого сорта. Таким образом, для получения максимальной стоимости продукции необходимо максимизировать целевую функцию (1.2.1) с соблюдением всех условий задачи, которые накладывают ограничения (1.2.2) на .
2 . Приведение задачи к канонической форме
Задача линейного программирования записана в канонической форме, если она формулируется следующим образом.
Требуется найти вектор , доставляющий максимум линейной форме
(2.1)
при условиях
(2.2)
(2.3)
где
Перепишем исходную задачу (1.2.1) - (1.2.2):
(2.4)
при ограничениях