Реферат: Ряды Фурье и их приложения
Оценка коэффициентов Фурье. (Бугров)
Теорема 1. Пусть функция ƒ(x) периода 2π имеет непрерывную производную ƒ( s) (x) порядка s, удовлетворяющей на всей действительной оси неравенству:
│ ƒ( s) (x)│≤ Ms ; (5)
тогда коэффициенты Фурье функции ƒ удовлетворяют неравенству
(6)
Доказательство. Интегрируя по частям и учитывая, что
ƒ(-π) = ƒ(π), имеем
Поэтому
Интегрируя правую часть (7) последовательно, учитывая, что производные ƒ΄ , …, ƒ( s-1) непрерывны и принимают одинаковые значения в точках t = -π и t = π, а также оценку (5), получим первую оценку (6).
Вторая оценка (6) получается подобным образом.
Теорема 2. Для коэффициентов Фурье ƒ(x) имеет место неравенство
(8)
Доказательство. Имеем
(9)
Вводя в данном случае замену переменной и учитывая, что ƒ(x) – периодическая функция, получим
Складывая (9) и (10), получаем
Отсюда
Аналогичным образом проводим доказательство для bk .
Следствие. Если функция ƒ(x) непрерывна, то её коэффициенты Фурье стремятся к нулю: ak → 0, bk → 0, k → ∞.
Пространство функций со скалярным произведением.
Функция ƒ(x) называется кусочно-непрерывной на отрезке [a, b], если она непрерывна на этом отрезке, за исключением, может быть, конечного числа точек, где она имеет разрывы первого рода. Такие точки можно складывать и умножать на действительные числа и получать как результат снова кусочно-непрерывные на отрезке [a, b] функции.
Скалярным произведением двух кусочно-непрерывных на [a, b] (a < b) функций ƒ и φ будем называть интеграл
(11)
Очевидно для любых кусочно-непрерывных на [a, b] функций ƒ , φ , ψ выполняются свойства: