Реферат: Шар и сфера
поверхностью; такая плоскость называется касательной к шару. Радиус, проведенный в точку касания, перпендикулярен к касательной плоскости.
Действительно, если плоскость имеет с поверхностью шара единственную общую течку, то эта точка ближайшая к центру шара по сравнению с остальными точками плоскости и потому служит основанием перпендикуляра, опущенного из центра шара на плоскость.
Если, наконец, основание перпендикуляра М0 окажется внутри шара (рис. 4), то плоскость будет пересекать поверхность шара, так как часть ее окажется внутри шара, а часть — вне. Исследуем линию пересечения такой плоскости с шаровой поверхностью. Пусть расстояние ее от центра шара равно d, d<R. Тогда оказывается, что линия пересечения плоскости с поверхностью шара является окружностью с центром в точке М0 и радиусом, равным . Для доказательства проведем через М0 произвольный луч М0М, лежащий в секущей плоскости. Выходя из внутренней области шара во внешнюю, он пересечет поверхность шара в некоторой точке М. Рассмотрим треугольник ОМ0М с прямым углом при вершине М0. Катет М0М по теореме Пифагора будет равен . Впрочем, постоянство длины отрезка независимо от направления луча М0М в данной плоскости видно и без применения теоремы Пифагора (пользуемся равенством прямоугольных треугольников, имеющих общие катеты и равные гипотенузы). Теперь видно, что все точки пересечения плоскости , с поверхностью шара лежат на одной окружности с центром М0 и радиусом, равным. Напротив, любая точка этой окружности удалена от центра шара на расстояние, равное , и потому лежит на поверхности шара (равно как и в плоскости ) и, значит, принадлежит рассматриваемой линии пересечения. Из этого видно, что линия пересечения - полная окружность, а не какая-либо часть ее.
Итак, если длина перпендикуляра, опущенного из центра О шара радиуса R на данную плоскость, равна d, то:
-
при d>R плоскость не пересекает шара;
-
при d = R плоскость касается шара в одной точке, радиус,
проведенный в точку касания, перпендикулярен к плоскости; -
при d<R плоскость пересекает шар по окружности, цент
ром которой служит основание перпендикуляра, опущенного из
центра шара на плоскость, а радиус равен.
В частности, плоскость, проходящая через центр шара, пересекает его по окружности максимально возможного радиуса, равного радиусу шара R. Такие сечения шара плоскостями, проходящими через его центр, называются большими кругами шара.
Для наглядности вышеизложенного материала я предлагаю решить две небольшие задачи.
Задача 1. Два сечения шара радиуса 10 см параллельными плоскостями имеют радиусы, равные 6 еж и 8 см. Найти расстояние между секущими плоскостями.
Решение. Находим расстояние каждой из параллельных плоскостей до центра шара:
в зависимости от того, лежит ли центр шара между плоскостями или нет, получаем два различных ответа к задаче:
Задача 2. Расстояние между центрами двух шаров равно d; радиусы их R1 и R2. Найти радиус окружности, по которой они пересекаются.
Решение. Искомый радиус служит высотой треугольника OMO1 (рис. 5). Площадь S треугольника ОМО2 находится по трем сторонам 001 = d, R1 R2 и искомый радиус равен r=2S/d. Прямая линия также может занимать по отношению к шару три существенно различных положения. Именно, она может пересечь поверхность шара в двух различных точках, не пересекать ее или иметь с ней одну общую точку. В последнем случае она будет называться касательной к шару.
2.3. Принцип Кавальери. Нахождение объёма шара с помощью принципа Кавальери.
В Европе XVII-ХVIII веков и, прежде всего, в экономически развитых государствах, укреплялся новый общественный строй - капитализм. Составной частью этого процесса была техническая революция - переход от мануфактурной промышленности к фабричной и, как следствие, серия изобретений, среди которых - создание паровой машины. Стремительное развитие математики в эту эпоху было обусловлено также усовершенствованием машин для предприятий, изобретением огнестрельного оружия и книгопечатания, постройкой судов для океанского плавания. Возникла необходимость теоретического и научного изучения движения, изменения вообще.
Открытия в астрономии, связанные с именами Н. Коперника и И. Кеплера, позволили по-новому взглянуть на место человека во Вселенной и его умение рациональным образом объяснить астрономические явления. Законы небесной механики дали возможность дополнить законы Земли.
И. Кеплер практически всю свою жизнь посвятил изучению, развитию и пропаганде гелиоцентрической системы Коперника. Анализируя огромный материал астрономических наблюдений, он в 1609-1619 гг. открыл три закона движения планет, носящие его имя, среди которых закон, связанный с площадью сектора.
Задача вычисления секториальных площадей требовала умения пользоваться бесконечно малыми величинами. Этих знаний недоставало и для решения других задач практического характера. Круг, в представлении Кеплера, состоял из бесконечно большого числа треугольников с общей вершиной в центре, а шар - из бесконечно большого числа утончающихся пирамид с вершинами в его центре. Книга ученого «Стереометрия винных бочек» (1615 г.) произвела большое впечатление на читателей, так как в ней был описан доступный метод определения объема 93 различных тел вращения (бочек). Каждому из них он дал оригинальное название: лимон, груша, чалма и т. п. Кеплер заменял неизвестный объем известным путем деления данного тела на сколь угодно малые части и образования из них нового тела (быть может, путем деформации), объем которого можно найти. Доказательства были нестрогими, и это вызывало много споров у математиков. Как видим, Кеплер получил новый результат весьма простым приемом. «Стереометрия винных бочек» - первая работа того времени, вводящая в геометрию бесконечно малые величины и принципы интегрального исчисления, хотя, как говорил сам ученый во введении к этой книге, поводом и целью написания труда первоначально явился частный и практический вопрос об измерении объема винных бочек с помощью одного промера их поперечной длины. Интерес математиков сосредотачивался главным образом на общих принципах определения объемов тел вращения с помощью бесконечно малых величин.
Среди таких математиков был итальянский монах Бонавентура Кавальери (1598-1647). Он занимал кафедру математики в Болонском университете. В переписке с астрономом и математиком Г. Галилеем они обсуждали разнообразные механические и математические проблемы, и в частности метод «неделимых». Галилей собирался, но так и не написал книгу об этом методе, зато у Кавальери в 1635 г. вышла книга «Геометрия, изложенная новым способом при помощи неделимых частей непрерывных величин». При вычислении площадей многоугольников бывает полезно преобразовывать фигуры, не меняя их площадей, например, разрезать на части и составлять новые (так называемые равносоставленные фигуры). Так можно преобразовать друг в друга треугольники с равными основаниями и высотами. Можно ли аналогичным образом преобразовывать криволинейные фигуры? Кавальери представляет их себе состоящими из бесконечно тонких параллельных плоских слоев - «неделимых» или «нитей» и утверждает, что площадь не меняется при сдвигах этих слоев друг относительно друга. Иначе, принцип Кавальери состоит в том, что если пересечь фигуру семейством всех прямых, параллельных заданной, то длины пересечений полностью определят площадь фигуры. В частности, если у двух фигур эти длины совпадают, то они равновелики. Строгого обоснования своего принципа Кавальери не дал, но рассмотрел его многочисленные применения. Например, на основе этого принципа легко получается равновеликость треугольников с равными основаниями и высотами.
Одно из самых удивительных применений принципа Кавальери принадлежит французскому математику Ж. Робервалю (1602-1675), который нашел площадь сегмента, ограниченного одной аркой циклоиды.
Еще более эффективен принцип Кавальери при нахождении объемов тел. Он состоит в том, что объем тела определяется площадями его пересечений «всеми плоскостями», параллельными некоторой заданной.
Однако интегральное исчисление содержит общие методы для вычисления площадей и объемов, причем там, где применение принципа Кавальери требовало нестандартных построений, к успеху приводят стандартные вычисления, и постепенно принцип Кавальери отошел в область истории. Но поскольку по принципу Кавальери легко вычисляются все «школьные» объемы и площади, неоднократно предлагалось принять принцип Кавальери в школьной геометрии за аксиому.
Видный советский ученый, историк математики, профессор Д. Д. Мордухай-Болтовский (1876—1952), которому принадлежит самый совершенный русский перевод «Начал» Евклида с обстоятельными комментариями, дал интересный вывод формулы объема шара на основе принципа Кавальери.
Вот это доказательство.
Поместим между двумя параллельными плоскостями полусферу АВС и цилиндр A'B'C'D' (рис. 6) с основанием того же радиуса R, что и шар, и с высотой, равной радиусу, с входящим в него конусом C'D'O', который имеет своим основанием верхнее основание цилиндра, а вершиной — центр нижнего основания.
На основании принципа Кавальери мы вправе сделать заключение, что объем шара равен объему тела, получаемого вырезыванием конуса из цилиндра. В самом деле, легко видеть, что круг ab, полученный в сечении сферы плоскостью , равновелик с кольцом a'c'd'b', получаемым в сечении вышеуказанного тела той же самой плоскостью. Действительно, на основании теоремы Пифагора в полусфере