Реферат: Шар и сфера

(2.4.5)

Здесь явно указаны начальное и конечное значения x. Теперь понятно, что интеграл используется для того, чтобы освободить нас от некоторых громоздких вычислений (порой, как в данном примере, весьма и весьма однообразных, а также требующих огромного внимания, т.к. даже малейшая неточность может повлечь за собой существенные расхождения с правильным ответом), а так же по ряду других причин, углубляться в которые сейчас нет никакого смысла.


2.5. Вычисление объёмов тел с помощью интеграла.

Рассмотрим способ вычисления объемов тел, основанный на понятии интеграла, которое известно из курса алгебры и на­чал анализа.

Пусть тело Т, объем которого нужно вычислить, заключено между двумя параллельными плоскостями и (рис. 8). Вве­дем систему координат так, чтобы ось Ох была перпендикуляр­на к плоскостям и , и обозначим буквами а и Ь абсциссы точек пересечения оси Ох с этими плоскостями (а<b). Будем счи­тать, что тело таково, что его сечение Ф(х) плоскостью, прохо­дящей через точку с абсциссой х и перпендикулярной к оси Ох, является либо кругом, либо многоугольником для любого (при х = а и х = b сечение может вырождаться в точку, как, например, (при х=а на рисунке 8). Обозначим площадь фигуры Ф(х) через S(х) и предположим, что S(х) — непрерыв­ная функция на числовом отрезке [а; b]. Разобьем числовой отрезок [а;b] на п равных отрезков точ­ками и через точки с абсциссами про­ведем плоскости,

перпендикулярные к оси Ох (рис. 9). Эти плос­кости разбивают тело Т на п тел: . Если сечение — круг, то объем тела (заштрихованного на рисунке 9) приближенно равен объему цилиндра с основанием и высотой . Если — многоугольник, то объем тела приближенно равен объему прямой призмы с основанием и высотой . И в том и в другом случае объем тела приближенно равен , а объем V всего тела T можно при­ближенно вычислить по формуле

(2.5.1)

Приближенное значение объема тела Т тем точнее, чем больше п и, следовательно, меньше . Примем без доказательства, что равен объему тела, т.е. . С другой стороны,

сумма Vn является интегральной суммой для непрерывной функции S(х) на числовом отрезке [а;b], поэтому .

Таким образом, мы получили формулу для вычисления объема

тела с помощью интеграла:


. (2.5.2)


Назовем ее основной формулой для вычисления объемов тел.


2.6. Объём шара.

После столь длительных подготовок, мы, основываясь на теоретических знаниях изложенных выше, можем приступить к доказательству теоремы о вычислении объёма шара с помощью определённого интеграла.

Теорема. Объём шара радиуса R равен.

Доказательство. Рассмотрим шар радиуса R с центром в точке О и выберем ось Ох произвольным образом (рис. 10). Сечение шара плоскостью, перпендикулярной к оси Ох и проходя­щей через точку М этой оси, является кругом с центром в точке М. Обозначим радиус этого круга через r, а его площадь через S(х), где х — абсцисса точки М. Выразим S(х) через х и R. Из прямо­угольного треугольника ОМС находим:

. (2.6.1)

Так как , то

. (2.6.2)

Заметим, что эта формула верна для любого положения точки М на диаметре АВ, т. е. Для всех х, удовлетворяющих условию . Применяя основную формулу для вычисления объемов тел при , , получим

. (2.6.3)

Теорема доказана.

2.7. Шаровой сегмент. Объём шарового сегмента.

Шаровым сегментом называется часть шара, отсе­ченная от него плоскостью (рис. 11). Всякая плоскость, пересекающая шар, разби­вает его на два сегмента. Объем шарового сегмента находится при помощи тех же рас­суждений из рис. 11, стоит лишь веять не все тело («цилиндр без конуса»), а его часть, отсеченную плоскостью, параллельной основанию. Рассмотрим, например, шаровой сегмент, лежащий выше секущей плоскости, проведенной на высоте х от плоскости основания полушара, т.е. на расстоянии от верхней точки полушара. Величина h называется стрелкой сегмента. Искомый объем будет равен раз­ности объемов цилиндра радиуса R с высотой h и усеченного конуса; так как радиус малого основания конуса равен , то получаем для объема сегмента

. (2.7.1)

Раскрывая скобки и упрощая выражение, приведем его к виду

. (2.7.2)

Эта формула выведена для сегмента, стрелка которого не превосходит радиуса шара. Она остается верна и для сегмента c любой стрелкой . Пусть сегмент со стрелкой - дополнительный к сегменту со стрелкой . Вычислим его объём как разность объёмов шара и сегмента со стрелкой h:

. (2.7.3)

К-во Просмотров: 2738
Бесплатно скачать Реферат: Шар и сфера