Реферат: Шар и сфера
(2.4.5)
Здесь явно указаны начальное и конечное значения x. Теперь понятно, что интеграл используется для того, чтобы освободить нас от некоторых громоздких вычислений (порой, как в данном примере, весьма и весьма однообразных, а также требующих огромного внимания, т.к. даже малейшая неточность может повлечь за собой существенные расхождения с правильным ответом), а так же по ряду других причин, углубляться в которые сейчас нет никакого смысла.
2.5. Вычисление объёмов тел с помощью интеграла.
Рассмотрим способ вычисления объемов тел, основанный на понятии интеграла, которое известно из курса алгебры и начал анализа.
Пусть тело Т, объем которого нужно вычислить, заключено между двумя параллельными плоскостями и (рис. 8). Введем систему координат так, чтобы ось Ох была перпендикулярна к плоскостям и , и обозначим буквами а и Ь абсциссы точек пересечения оси Ох с этими плоскостями (а<b). Будем считать, что тело таково, что его сечение Ф(х) плоскостью, проходящей через точку с абсциссой х и перпендикулярной к оси Ох, является либо кругом, либо многоугольником для любого (при х = а и х = b сечение может вырождаться в точку, как, например, (при х=а на рисунке 8). Обозначим площадь фигуры Ф(х) через S(х) и предположим, что S(х) — непрерывная функция на числовом отрезке [а; b]. Разобьем числовой отрезок [а;b] на п равных отрезков точками и через точки с абсциссами проведем плоскости,
перпендикулярные к оси Ох (рис. 9). Эти плоскости разбивают тело Т на п тел: . Если сечение — круг, то объем тела (заштрихованного на рисунке 9) приближенно равен объему цилиндра с основанием и высотой . Если — многоугольник, то объем тела приближенно равен объему прямой призмы с основанием и высотой . И в том и в другом случае объем тела приближенно равен , а объем V всего тела T можно приближенно вычислить по формуле
(2.5.1)
Приближенное значение объема тела Т тем точнее, чем больше п и, следовательно, меньше . Примем без доказательства, что равен объему тела, т.е. . С другой стороны,
сумма Vn является интегральной суммой для непрерывной функции S(х) на числовом отрезке [а;b], поэтому .
Таким образом, мы получили формулу для вычисления объема
тела с помощью интеграла:
. (2.5.2)
Назовем ее основной формулой для вычисления объемов тел.
2.6. Объём шара.
После столь длительных подготовок, мы, основываясь на теоретических знаниях изложенных выше, можем приступить к доказательству теоремы о вычислении объёма шара с помощью определённого интеграла.
Теорема. Объём шара радиуса R равен.
Доказательство. Рассмотрим шар радиуса R с центром в точке О и выберем ось Ох произвольным образом (рис. 10). Сечение шара плоскостью, перпендикулярной к оси Ох и проходящей через точку М этой оси, является кругом с центром в точке М. Обозначим радиус этого круга через r, а его площадь через S(х), где х — абсцисса точки М. Выразим S(х) через х и R. Из прямоугольного треугольника ОМС находим:
. (2.6.1)
Так как , то
. (2.6.2)
Заметим, что эта формула верна для любого положения точки М на диаметре АВ, т. е. Для всех х, удовлетворяющих условию . Применяя основную формулу для вычисления объемов тел при , , получим
. (2.6.3)
Теорема доказана.
2.7. Шаровой сегмент. Объём шарового сегмента.
Шаровым сегментом называется часть шара, отсеченная от него плоскостью (рис. 11). Всякая плоскость, пересекающая шар, разбивает его на два сегмента. Объем шарового сегмента находится при помощи тех же рассуждений из рис. 11, стоит лишь веять не все тело («цилиндр без конуса»), а его часть, отсеченную плоскостью, параллельной основанию. Рассмотрим, например, шаровой сегмент, лежащий выше секущей плоскости, проведенной на высоте х от плоскости основания полушара, т.е. на расстоянии от верхней точки полушара. Величина h называется стрелкой сегмента. Искомый объем будет равен разности объемов цилиндра радиуса R с высотой h и усеченного конуса; так как радиус малого основания конуса равен , то получаем для объема сегмента
. (2.7.1)
Раскрывая скобки и упрощая выражение, приведем его к виду
. (2.7.2)
Эта формула выведена для сегмента, стрелка которого не превосходит радиуса шара. Она остается верна и для сегмента c любой стрелкой . Пусть сегмент со стрелкой - дополнительный к сегменту со стрелкой . Вычислим его объём как разность объёмов шара и сегмента со стрелкой h:
. (2.7.3)