Реферат: Шпора 2 по мат анализу

1.Метрические, линейные, нормированные пространства.

2.Понятие функции m переменных. Предел функции m переменных.

Понятие:

Пусть даны множества D R n и I R .

Определение 1. Если каждой точке множества D ставится в соответствие единственное число у из I , то говорят, что задана функция n переменных у= f (x 1 , …, x n ). Множество D называется областью определения функции D (у)= D , множество I называется множеством значений функции I (у)= I .

Если зафиксировать любые n -1 переменные, то функция многих переменных превращается в функцию одной переменной. x 2 =с 2 , x 3 =с 3 , …, х n =c n ; y = f (x 1 , c 2 , …, c n ) - функция одной переменной х 1 .

Пример. - функция двух переменных,

- функция трех переменных.

Пусть имеется n +1 переменная x 1 , x 2 , ..., x n , y, которые связаны между собой так, что каждому набору числовых значений переменных x 1 , x 2 , ..., xn соответствует единственное значение переменной y . Тогда говорят, что задана функция f от n переменных . Число y, поставленное в соответствие набору x 1 , x 2 , ..., xn называется значением функции f в точке (x 1 , x 2 , ..., xn ), что записывается в виде формулы y = f (x 1 ,x 2 , ..., xn ) или y =y (x 1 ,x 2 , ..., xn ).

Переменные x 1 , x 2 , ..., xn являются аргументами этой функции, а переменная y ‑ функцией от n переменных.

3.Непрерывность функции m переменных. Непрерывность функции m переменных по одной из переменных.

4.Непрерывность сложной функции.

Пусть функция j(t) непрерывна в точке t0 и функция f(x) непрерывна в точке х0 =j(t0 ). Тогда функция f(j(t)) непрерывна в точке t0 .

Доказательство.

Для доказательства этой теоремы воспользуемся формальным преобразованием двух строчек кванторов. Имеем

Выписывая подчеркнутые кванторы, получим, что

,

что и говорит о том, что f(j(t)) непрерывна в точке t0 . <

Обратите внимание на следующие детали:

а) т.к. x=j(t), то |j(t)-j(t0 )|<d может быть записано как |x-x0 |<d, и f(x) превращается в F(j(t));

б) при определении непрерывности j(t) в точке t0 в первом кванторе стоит буква d. Это необходимо для согласования с квантором в предыдущей строке и взаимного уничтожения . Любая другая буква на этом месте не дала бы верного результата.

5.Частные производные функции m переменных.

6.Дифференцируемость функции m переменных.

7.Дифференциал функции m переменных.

8.Дифференцирование сложной функции.

9.Производная по направлению. Градиент.

Производная по направлению. Если в n-мерном пространстве задан единичный вектор , то изменение дифференцируемой функции в направлении этого вектора характеризуется производной по направлению: . В частности, для функции трех переменных , - направляющие косинусы вектора .

Градиент. Производная по направлению представляет собой скалярное произведение вектора и вектора с координатами , который называется градиентом функции и обозначается . Поскольку , где - угол между и , то вектор указывает направление скорейшего возрастания функции , а его модуль равен производной по этому направлению.

10.Квадратичные формы. Критерии Сильвестра знакоопределенности квадратичной формы.

Скалярная функция векторного аргумента, которая представляет собой однородный многочлен второго порядка, называется квадратичной формой.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 376
Бесплатно скачать Реферат: Шпора 2 по мат анализу