Реферат: Шпора 2

это ур-е пов-ти.

Вопрос№11

Если пов-ть Р задана параметрич. ур-ями

(u,v) G

ф-ии x,y,z непрерывны с частными производными то поверхностный интеграл 1-го рода вычисл. С помощью интеграла двойного рода,взятого по обл. G по ф-ле:

Если пов-ть Р задается явным урав. Z=F(x,y)=z(x,y)

Где (x,y),причем ф-ия F-непрерыв. Со своими

Часными произв.,то поверхностный интегр.1-го рода

Вычисл.по ф-ле :

где P и Q соотв.часные произв.

Поверхн.интеграл 2-го рода

Криволин.интеграл 2-го рода:

Пусть задана двусторонняя пов-ть S и на верхн.

Стороне задана ф-ция U=F(x,y,z).Разобьем задан.

Повер.S непрерывн.кривыми на конечное число

Частичных поверх. S1,S2….Sn.Проэктир.эти поверх.

На XOY , -площадь прэкции повер.Si:

Если сущ.предел Lim s n при не зависит

От способа дел.области на части и выбора точек Mi,

То его наз.повер.интегалом 2-го рода по поверхн.и

Обознач. :

Если же проэктировать пов-ть на другие плоскости ,то

Получится:

Пусть на пов-ти заданы три ф-ции P(x,y,z), Q(x,y,z)

R(x,y,z) тогда повер.интегр.2-го рода общего вида наз.

Пусть пов-ть S явл.гладкой поверхн.,такой что в каждой точке ее

Сущ. Пл-ть такая что в каждой т.пов-ти сущ.нормаль.Обозначим

Через ,,-углы ,которые образуют углы с осями OX,OY,OZ.

Тогда,как и для криволин.интеграла имеет место форма между повер.Интегр.1 и 2 рода:

Имеет место следующ.ф-ла замены перем.в пов.интегр.2-го.

Пусть пов-ть S задается своими парам.ур-ми:

ф-ции x,y,z –непрерыв.и имеют непрер.частн. произв.Тогда:

К-во Просмотров: 1108
Бесплатно скачать Реферат: Шпора 2