Реферат: Шпора 2
это ур-е пов-ти.
Вопрос№11 Если пов-ть Р задана параметрич. ур-ями (u,v) G ф-ии x,y,z непрерывны с частными производными то поверхностный интеграл 1-го рода вычисл. С помощью интеграла двойного рода,взятого по обл. G по ф-ле: Если пов-ть Р задается явным урав. Z=F(x,y)=z(x,y) Где (x,y),причем ф-ия F-непрерыв. Со своими Часными произв.,то поверхностный интегр.1-го рода Вычисл.по ф-ле : где P и Q соотв.часные произв. Поверхн.интеграл 2-го рода
Криволин.интеграл 2-го рода: Пусть задана двусторонняя пов-ть S и на верхн. Стороне задана ф-ция U=F(x,y,z).Разобьем задан. Повер.S непрерывн.кривыми на конечное число Частичных поверх. S1,S2….Sn.Проэктир.эти поверх. На XOY , -площадь прэкции повер.Si:
Если сущ.предел Lim s n при не зависит От способа дел.области на части и выбора точек Mi, То его наз.повер.интегалом 2-го рода по поверхн.и Обознач. : Если же проэктировать пов-ть на другие плоскости ,то Получится: Пусть на пов-ти заданы три ф-ции P(x,y,z), Q(x,y,z) R(x,y,z) тогда повер.интегр.2-го рода общего вида наз. Пусть пов-ть S явл.гладкой поверхн.,такой что в каждой точке ее Сущ. Пл-ть такая что в каждой т.пов-ти сущ.нормаль.Обозначим Через ,,-углы ,которые образуют углы с осями OX,OY,OZ. Тогда,как и для криволин.интеграла имеет место форма между повер.Интегр.1 и 2 рода: Имеет место следующ.ф-ла замены перем.в пов.интегр.2-го. Пусть пов-ть S задается своими парам.ур-ми: ф-ции x,y,z –непрерыв.и имеют непрер.частн. произв.Тогда: К-во Просмотров: 1108
Бесплатно скачать Реферат: Шпора 2
|