Реферат: Шпоры по математическому анализу
5. Определяются вертикальные, горизонтальные и наклонные асимптоты.
Рекомендуется вычислять значения самой функции в тех точках, где f'(x) и f''(x) обращаются в нуль и наносить соответствующие точки на график. Затем нанесеные точки плавно соединяется прямой с учетом всех результатов исследования. Если функция обладает свойством четности или нечетности, то можно использовать это обстоятельство при исследовании (или после исследования для частичной проверки правильности построения графика).
21. Теорема о среднем значении для определенного интеграла.
Если функция y=f(x) непрерывна на отрезке [a,b], то найдется такая точка ξÎ(a,b), что справедливо равенство:
Теорема верна и при b<a.
Доказательство: Проведем его для случая a<b. Пусть m и M - наименьшее и наибольшее значение функции f(x) на отрезке [a,b] (для непревной функции они существуют по теореме Вейерштраса). По следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства: (на этом следствие из теоремы закончилось, но к нему относится ниже написанное неравенство))
можно записать
??????? ??? ??????????? ?? ???????????? ????? b-a, ???????:
Непрерывная функция f(x) принимает всякое значение промежуточное между наименьшим m и наибольшим M значениями. Поэтому существует такое число x(a<x<b), что
Чтд.
22. Классы интегрируемых функций. Функция Дирихле .
интегрируемость не является свойством, присущим всем функциям. В этом убеждает следующий пример. Рассмотрим функцию f(x), называемой функцией Дирихле:
Сделаем произвольное разбиение R отрезка [a,b]. На любом частичном отрезке [xi , xi+1 ] найдетсяи как рациональная точка xi .Так, и иррациональная точка hi .Составим две интегральные суммы:sR и
Пусть
??? lR →0 ?????? ???????????? ???? ???? :sR ????? b-a, ? ?? ?????, ??? ???
????? ????. ????, ??? ???????????? ???? ??????? ???? ??????? ?????????? ?????????, ????????? ?? ?????? ????? ?? ???????? [xi , xi+1 ]. ??? ????????, ??? ??????? ??????? ?? ?????????????.
З класса функции:
1. Функции непрерывные на отрезке [a,b].
2. Функции имеющие не более конечного числа разрывов 1-го рода на отрезке [a,b]. (их называют кусочно-непрерывными)
3. Функции монотонные на отрезке [a,b] (у функции этого класса число разрывов может быть бесконечным).
23. Интеграл с переменным верхним пределом. Теорема о его непрерывности .
Теорма: Если функция f(x) интегрируема на отрезке [a,b], то функция
непрерывна на этом отрезке.
Доказательство: Дадим числу х приращение ∆х так, чтобы х+∆х Î [a,b] . Для наглядности изобразим на числовой оси один из возможных вариантов расположения точек:
a x0 x х+∆х b
???????:
По теореме (Если функция y=f(x) интегрируема на отрезке, то интегрируема и абсолютная величина |f(x)|, причем
?(?? ???? ??????? ???????????, ?? ??????????? ????????? ? ???.) ? ????????? ?? ??????? (???? ?? ??????? [a,b] ??????? f(x) ???????????? ? ????????????? ??????????? m£f(x)£M. ?? ??????????? ???????????:
(на этом следствие из теоремы закончилось)
получаем:
Отсюда следует, что при ∆х→0 будет ∆ F→0 . Это доказывает непрерывность функции F(x) . Отметим, что для подынтегральной функции f(x) точка х может быть точкой разрыва.
24. Теорема о произвольной от интеграла с переменным верхним пределом.
Теорема: Если функция y=f(x) непрерывна на промежутке (a,b), то производная от интеграла