Реферат: Случайные вектора

где и . При этом выражается через индивидуальные характеристики и , т.е. каких-либо групповых эффектов в не проявляется, что является следствием независимости случайных величин и . Из цепочки преобразований (54.4) следует равенство - математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

54.2. Аналогично (54.2) числа

(54.5)

называются центральными смешанными моментами, порядка . Наиболее важной групповой характеристикой двух случайных величин среди чисел (54.5) является ковариация

, (54.6)

которая является центральным смешанным моментом порядка . Для ковариации используется также обозначение: . Если , то - совпадает с дисперсией случайной величины .

Если и - независимы, то из (54.6) следует, что ковариация

.

Обратное утверждение в общем случае неверно, т.е. из равенства в общем не следует независимость случайных величин и . В частности, обратное утверждение справедливо, если и - гауссовы случайные величины. Более подробно этот вопрос обсуждается ниже.

54.3. Найдем связь между корреляцией и ковариацией случайных величин и . Из определения ковариации (54.6) следует

.

Таким образом, ковариация и корреляция связаны соотношением

. (54.7)

Верхняя и нижняя границы корреляции и ковариации

55.1. Пусть случайные величины и имеют математические ожидания , , дисперсии , , корреляцию и ковариацию . Рассмотрим неравенство

. (55.1)

Возведем в квадрат, затем оператором математического ожидания подействуем на каждое слагаемое, тогда (55.1) принимает вид:

,

что далее сводится к неравенству

. (55.2)

Его левая часть может быть как положительной так и отрицательной, правая часть - только положительна. Поэтому неравенство (55.2) обычно записывается в более сильном варианте:

. (55.3)

Таким образом, корреляция случайных величин и принимает значения из интервала .

Соотношение, аналогичное (55.3) можно получить и для ковариации , если в исходном выражении (55.1) вместо подставить центрированную случайную величину и вместо соответственно . При этом необязательно выполнять все преобразования, аналогичные (55.1) - (55.3), достаточно учесть, что замена и приводит к замене на , на , а также на . Поэтому из (55.3) следует

. (55.4)

55.2. Неравенства, определяющие область значений корреляции и ковариации , аналогичные (55.3), (55.4), можно получить в другом виде на основе следующего очевидного неравенства:

. (55.5)

Отсюда , поэтому справедливо неравенство

. (55.6)

К-во Просмотров: 528
Бесплатно скачать Реферат: Случайные вектора