Реферат: Структура аффинного пространства над телом
Определение 3.1. Непустое подмножество аффинного пространства ℰ называется линейным аффинным многообразием , если в существует точка , такая, что является векторным подпространством в .
Приняв определение 3.1., можно непосредственно установить следующее
Предложение 3.2. Пусть - непустое подмножество в ℰ и - точка , такая, что есть векторное подпространство в . Тогда для любой точки из множество совпадает с .
Доказательство. есть множество векторов , где ; таким образом, есть образ при биекции , , и поскольку , то .
Установив это, легко убедиться, что наделено структурой аффинного пространства, ассоциированного с векторным пространством , которое не зависит от точки .
Вместо того, чтобы исходить из векторной структуры , можно использовать отношение эквивалентности, связанное с действием на : ЛАМ суть классы эквивалентности для этого отношения, и мы приходим к следующему равносильному определению:
Определение 3.2. Пусть - векторное подпространство в и - отношение эквивалентности, определяемое на ℰ с помощью
;
аффинными многообразиями с направлением называются классы эквивалентности по отношению .
Существуют и другие способы определить ЛАМ пространства ℰ , но нам кажется, что данные выше определения ведут к наиболее простому способу изложения дальнейшего.
Случай векторного пространства.
Каждое векторное пространство канонически снабжено аффинной структурой, так как действует на себе трансляциями; в этом случае нулевой вектор называется также ”началом” и
.
ЛАМ пространства , проходящие через , суть векторные подпространства в ; ЛАМ, проходящие через точку , суть образы векторных подпространств при параллельном переносе .
Ради кратности ЛАМ, не проходящие через начало, будут называться собственно аффинными (поскольку они не являются ВПП в ).
Размерность линейного аффинного многообразия
Вернемся к случаю произвольного аффинного пространства ℰ ; предшествующие рассмотрения позволяют определить размерность ЛАМ как размерность его направляющего ВПП. Отсюда появляются понятия: аффинной прямой (ЛАМ размерности 1) и аффинной плоскости (ЛАМ размерности 2). ЛАМ размерности суть точки ℰ .
Аффинной гиперплоскостью называется ЛАМ, направляющее подпространство которого есть векторная гиперплоскость.
Пересечение линейных аффинных многообразий
Предложение 3. 3. Пусть - семейство аффинных подпространств в ℰ и для каждого - направляющее подпространство для .
Если пересечение непусто, то оно является аффинным подпространством в с направляющим .
Доказательство сразу получается из определения 3.1. При тех же обозначениях имеет место
Предложение 3.4. Для того, чтобы пересечение двух ЛАМ в ℰ было непустым , необходимо и достаточно, чтобы существовали такие точки и , что , и тогда