Реферат: Структура аффинного пространства над телом

Барицентры: приложения к изучению аффинных подпространств

В последующем всегда обозначает аффинное пространство, ассоциированное с левым векторным пространством над, вообще говоря, некоммутативным телом . ”Взвешенной точкой” называется элемент .

Теорема 4.1. Для каждого конечного семейства (системы) взвешенных точек, такого, что , существует единственная точка , удовлетворяющая любому (а тогда и двум остальным) из следующих трех условий a), b), c):

a) ,

b) ,

c) .

Эта точка называется барицентром (центром тяжести) системы . Мы обозначим ее .

Эквивалентность трех условий легко устанавливается с помощью соотношения Шаля.

Свойства. a) Однородность (слева).

Предложение 4.2. Для любого имеем

b) Ассоциативность .

Предложение 4.3. Пусть - разбиение , т.е. совокупность непустых попарно непересекающихся подмножеств , таких, что .

Если для любого скаляр отличен от нуля и мы положим , то

.

Доказательства получаются непосредственно

Замечания . По определению 4.2. можно всегда привести дело к случаю, когда ”полная масса” системы , т.е. равна 1. В этом и только в этом случае можно положить

К-во Просмотров: 397
Бесплатно скачать Реферат: Структура аффинного пространства над телом