Реферат: Теоретические основы и методы системного анализа оптимизации управления принятия решений и
1.3.1 Классификация систем по сложности
Определение большой системы
Существует ряд подходов к разделению систем по сложности. В частности, Г.Н. Поваров в зависимости от числа элементов, входящих в систему, выделяет четыре класса систем:
· малые системы (10...103 элементов);
· сложные системы (104 ...107 элементов);
· ультрасложные системы (107 . ..1030 элементов);
· суперсистемы (1030 .. .10200 элементов).
Так как понятие элемента возникает относительно задачи и цели исследования системы, то и данное определение сложности является относительным , а не абсолютным.
Английский кибернетик С. Бир классифицирует все кибернетические системы на простые и сложные в зависимости от способа описания: детерминированного или теоретико-вероятностного. А. И. Берг определяет сложную систему как систему, которую можно описать не менее чем на двух различных математических языках (например, с помощью теории дифференциальных уравнений и алгебры Буля).
Очень часто сложными системами называют системы, которые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе.
Четкое определение и критерии сложных систем (СС) в настоящее время отсутствуют. Однако есть признаки, такие как, многомерность, многосвязность, многоконтурность, а так же многоуровневый, составной и многоцелевой характер построения, по которым можно отнести модель к классу СС. Данный термин использовался в работах научной школы А.А. Вавилова.
При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфических задач, таких, как:
· определение общей структуры системы;
· организация взаимодействия между элементами и подсистемами;
· учет влияния внешней среды;
· выбор оптимальных режимов функционирования системы;
· оптимальное управление системой и др.
Чем сложнее система, тем большее внимание уделяется этим вопросам. Математической базой исследования сложных систем является теория систем. А при современном информационно-технологическом обеспечении внешней среды любой системы, исследование такой системы берут свои начала как из теории систем, так и из теории чисел, теории информации и других теорий. В теории систем большой системой (сложной, системой большого масштаба, LageScaleSystems) называют систему, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов и способна выполнять сложную функцию.
Четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы.
Под большой системой понимается совокупность материальных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и людей-руководителей, облеченных надлежащими правами и ответственностью для принятия решений. Материальные ресурсы - это сырье, материалы, полуфабрикаты, денежные средства, различные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей.
Примеры больших систем: информационная система; пассажирский транспорт крупного города; производственный процесс; система управления полетом крупного аэродрома; энергетическая система и др.
Характерные особенности больших систем. К ним относятся:
· большое число элементов в системе (сложность системы);
· взаимосвязь и взаимодействие между элементами;
· иерархичность структуры управления;
· обязательное наличие человека в контуре управления, на которого возлагается часть наиболее ответственных функций управления.
Сложность системы
Пусть имеется совокупность из n элементов. Если они изолированы, не связаны между собой, то эти n элементов еще не являются системой. Для изучения этой совокупности достаточно провести не более чем n исследований. В общем случае в системе связь элемента А с элементом Б не эквивалентна связи элемента Б с элементом А, и поэтому необходимо рассматривать n(n-1) связей. Если характеризовать состояние каждой связи наличием или отсутствием в данный момент, то общее число состояний (для такого самого простого поведения) системы будет равно 2^n. Даже при небольших n это фантастическое число. Например, пусть n== 10. Число связей n(n-1) = 90.
Поэтому изучение БС путем непосредственного обследования ее состояний оказывается весьма громоздким . Следовательно, необходимо использовать ЭВМ и разрабатывать методы, позволяющие сократить число обследуемых состояний БС. Сокращение числа состояний БС - первый шаг в формальном описании систем. В свою очередь серийные ЭВМ то же имеют пусть большие но всё же ограниченные ресурсы. Отсюда вытекает вопрос, если система является гипербольшой и продолжающей динамически развиваться, то какими методами пользоваться при её изучении. По определению А. И. Берга такую систему можно описать с помощью математических языков (теории дифференциальных уравнений и алгебры Буля). Т.е. основы вытекают из дискретной математики и теории чисел. Но, если гиперсистемы очень больших размеров, с числом своих элементов превосходящим диапазон серийных ЭВМ, а именно такие нас ожидают в недалёком будущем, то их исследование с помощью теории дифференциальных уравнений и алгеброй Буля будет недостаточно. Поиски методов в исследовании таких систем лежат в истоках методов модулярной алгоритмики предложенной профессором кафедры информатики Сургутского Государственного Университета д.т.н. Инютиным С.А..