Шпаргалка: Дискретная техника
Двоично-десятичный дешифратор.
Цифровые компараторы
(Схемы сравнения кодов).
- комбинационные логические устройства, предназначенные для сравнения чисел, представленных в виде двоичных кодов.
Число входов компаратора определяется разрядностью сравниваемых кодов. На выходах компаратора обычно формируются три сигнала:
F= - равенство кодов;
F> - числовой эквивалент первого кода больше числового эквивалента второго кода;
F< - числовой эквивалент первого кода меньше числового эквивалента второго кода;
Работу одноразрядного компаратора поясняет таблица истинности:
Входы | Выходы | |||
X1 | X2 | F= | F> | F< |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
Логические выражения для выходов будут иметь вид:
F= = X1’X2’+X1X2
F> = X1X2’
F< = X1’X2
Выражение для F= имеет в цифровой схемотехнике большое значение и называется Исключающее ИЛИ-НЕ и является инверсией для другой функции, которая называется «Исключающее ИЛИ», «сумма по модулю 2» или «операция XOR».
Многоразрядные схемы сравнения
На практике гораздо чаще приходится сталкиваться с задачей построения схем для сравнения многоразрядных двоичных кодов. Такая схема может быть построена на основе поразрядных схем сравнения, но может быть синтезирована и как специальная структура.
Рассмотрим подробнее второй способ. Для его реализации нужно записать таблицу истинности для необходимых входных кодов и по этой таблице составить аналитические выражения для каждого из выходов. Полученные выражения можно попробовать собрать в комбинации и упростить.
Пример: построение компаратора для неполной кодовой последовательности.
Построить схему сравнения кодов для чисел {3,6,7}
Составим таблицу истинности, описывающую состояния данного устройства:
Входы первого числа | Входы второго числа | Выходы компаратора | ||||||
Х1 | Х2 | Х3 | Х4 | Х5 | Х6 | F= | F> | F< |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | |||
1 | 1 | 1 | 0 | 0 | 1 | |||
1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | |||
1 | 1 | 1 | 0 | 0 | 1 | |||
1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | |||
1 | 1 | 1 | 1 | 0 | 0 |
F= = X1’X2Х3Х4’X5X6+ X1X2X3’X4X5X6’ + X1X2X3X4X5X6
F= = X2Х3X5X6 ( X1’X4’ + X1X4 ) + X1X2X4X5 ( X3’X6’ + X3X6 )
F= = X2X5 [ X3X6 ( X1’X4’ + X1X4 ) + X1X4 ( X3’X6’ + X3X6 ) ]
F> = X1X2X3’X4’X5X6 + X1X2X3X4’X5X6 + X1X2X3X4X5X6’
F> = X1X2X5 ( X3’X4’X6 + X3X4’X6 + X3X4X6’ )
F> = X1X2X5 ( X4’X6 + X3X4’X6 )
F< = X1’X2X3X4X5X6’ + X1’X2X3X4X5X6 + X1X2X3’X4X5X6