Шпаргалка: Дискретная техника

Таблица истинности такой функции выглядит так:

X1 X2 X3 Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Запишем логическое выражение для этой функции:

Для этого для каждого состояния «Y=1» запишем логическое произведение переменных по правилу если Xn=1, то в произведение запишем его прямое значение; если Xn=0, то в произведение запишем его инверсное значение.

Записанные логические произведения объединим логической суммой.

Полученное выражение будет иметь следующий вид:

Для схемотехнической реализации полученной логической функции потребуется три трехвходовых схемы И, одна трехвходовая схема ИЛИ и два инвертора НЕ.

Правила алгебры логики позволяют преобразовать полученное выражение к более простому и удобному виду:


Для практической реализации этой функции потребуется два двухвходовых элемента «И» и один двухвходовой элемент «ИЛИ».

Применив правило де-Моргана, можно преобразовать выражение к виду, удобному для реализации схемы на других элементах.

Допустим, что для построения схемы мы можем использовать только элементы И-НЕ, тогда:

Допустим, что мы можем использовать только элементы ИЛИ-НЕ, тогда:

Комбинационные и последовательностные устройства

Все устройства, оперирующие с двоичной (дискретной) информацией, подразделяются на два больших класса: комбинационные схемы (дискретные автоматы без памяти) и последовательностные устройства (дискретные автоматы с памятью).

Комбинационные схемы.

Комбинационной схемой или логическим устройством называют такое устройство, у которого сигналы на выходах в любой момент времени однозначно определяются сочетанием сигналов на входах и не зависят от предыдущих состояний данного устройства.

Схемным признаком таких устройств служит отсутствие цепей обратной связи, то есть замкнутых петель для прохождения сигналов с выходов устройства на его входы.

Примером комбинационных схем могут служить отдельные логические элементы, наборы электронных ключей, шифраторы, дешифраторы, мультиплексоры, демультиплексоры и большинство арифметических устройств: сумматоры, полусумматоры, перемножители и т.д.

Мультиплексоры.

Назначение мультиплексора – коммутация в желаемом порядке информации, поступающей с нескольких входных линий на одну выходную.

С помощью мультиплексора осуществляется разделение во времени информации, поступающей по разным каналам. Мультиплексор можно рассматривать как бесконтактный многопозиционный переключатель.

Мультиплексор «два к одному».

Для переключения входных сигналов используется один внешний сигнал.


К-во Просмотров: 627
Бесплатно скачать Шпаргалка: Дискретная техника